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The effect of rotation upon the classical Rayleigh-
Taylor instability is considered. We consider a two-layer
system with an axis of rotation that is perpendicular to
the interface between the layers. In general we find that
a wave mode’s growth rate may be reduced by rotation.
We further show that in some cases, unstable axisymmet-
ric wave modes may be stabilized by rotating the system
above a critical rotation rate associated with the mode’s
wavelength, the Atwood number and the flow’s aspect
ratio.

I. INTRODUCTION

Understanding of the Rayleigh-Taylor instability has
increased progressively since Lord Rayleigh’s [16] initial
work and the investigations of Taylor [24] and Lewis [9].
The motivation for research into this fundamental prob-
lem has changed over time, from the original interests of
Taylor and Lewis to the energy supply and astrophysical
aspects of more recent work. The now familiar struc-
ture of the Rayleigh-Taylor instability has been observed
from small scales in, for example, inertial confinement
fusion problems [see e.g., 5], to extremely large scales,
such as the crab nebula [see, e.g., 25] where pulsar winds
accelerate through dense supernova remnants. In many
cases of practical interest, it would be desirable to have
some further control over the instability after the setting
of the initial density profiles. One possibility is to ro-
tate the system; the often stabilising effect of rotation
on a flow is well-known [see e.g., 6]. Tao et al. [21]
investigated whether rotation may be used to influence
the Rayleigh-Taylor instability at the surface of an iner-
tial confinement fusion target by considering instability
at an interface parallel to the axis of rotation. In iner-
tial confinement fusion, the Rayleigh-Taylor instability
reduces the efficiency of fusion during both the accelera-
tion phase, between the ablator and the fuel, and during
the deceleration phase, between the hot and cold fuel re-
gions [see e.g., 11]. The efficiency is reduced due to the
increased interfacial surface area between the two layers
in each case. The work of Tao et al. [21] suggested that
the instability may be suppressed around the equatorial
region of a spherical rotating target.
In a previous paper [1] we reported results of experi-

ments to study the development of the Rayleigh-Taylor
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instability in a two-layer fluid system with axis of rota-
tion perpendicular to the layers. The presence of rota-
tion introduces a restoring force on fluid elements moving
perpendicular to the axis of rotation: the Coriolis force.
This fictitious force, which appears in a rotating refer-
ence frame, acts to restore a fluid element, traveling in a
direction perpendicular to the axis of rotation, to its orig-
inal position, following a curved path. The presence of
the Coriolis force therefore allows the fluid to support in-
ertial wave motions, the rotational counterpart to the in-
ternal gravity waves supported by a density stratification
[see e.g., 17, 18]. As will be shown, the Coriolis force acts
to inhibit large-scale overturning motions at the unstable
interface and is consequently important in changing the
character of the developing Rayleigh-Taylor instability
as the rate of rotation is increased. The effect is shown
qualitatively in Fig. 1. It can be seen that the large-scale
overturning motion required to form large vortices (top)
is restricted in the presence of rotation (bottom).
In this paper we present a theoretical study of the

Rayleigh-Taylor instability under the influence of rota-
tion. Miles [12, 13] considered the effects of rotation
on infinitesimal free-surface waves on a body of water,
remarking on Fultz’s [6] observation that the parabolic
nature of the free-surface is important and cannot be ne-
glected as previous authors had [see, e.g., 8]

‘The planar [horizontal hydrostatic interface]
approximation is necessarily inconsistent for
axisymmetric gravity waves in the sense that
both the rotation induced shift . . . and the
free-surface slope are of the same order of
magnitude.’

We develop the theory of Miles [12, 13] to allow for a two-
layer fluid system that may have either a stable or unsta-
ble interface. We find in the limit of high, stable density
difference that we recover Miles’ [13] result, and in the
limit of an unstable density difference with no rotation we
recover the classical Rayleigh-Taylor model [24]. In the
special limit of semi-infinite fluid layers and a strictly hor-
izontal interface we recover the model of Chandrasekhar
[3]. We develop the dispersion relation for perturbations
to an interface between two fluid layers in the low ro-
tation rate limit. For axisymmetric waves we are able
to find a critical rotation rate above which a given wave
mode behaves as an oscillating standing wave, but below
which exhibits Rayleigh-Taylor growth. In general, non-
axisymmetric waves cannot be stabilized indefinitely but
we are able to say for a given mode whether the growth
rate is reduced or increased by rotation and find that
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FIG. 1: The upper image, taken of our experiments, is
of a magnetically induced Rayleigh-Taylor instability
developing in a non-rotating system. The instability
develops in time, forming large vortices that transport
the green fluid downwards. The lower image is of the
same fluids but here the system is rotating. The effect
of the rotation can be seen to restrict the size of the

vortices that form and inhibit the bulk vertical
transport of fluid. The times shown are 1.92 s and 3.52 s

after initiation in the upper and lower images
respectively. The experiments are described in [1, 19].
The tank diameter is 90mm, and the rotation rate in

the lower image was 2.52 rad s−1.

there is a strong dependence on the aspect ratio of the
layers.
In §II we develop an inviscid theory based on the previ-

ous theories of Rayleigh-Taylor instability due to Taylor
[24] and the modeling of surface oscillations on rotating
bodies of fluid due to Lamb [8] and Miles [12, 13]. The
key results are: a dispersion relation for axisymmetric
and asymmetric perturbations to the interface of a ro-
tating two-layer fluid system (both stable and Rayleigh-
Taylor unstable); a critical rotation rate for stabilizing
Rayleigh-Taylor unstable axisymmetric modes of pertur-
bation. In §III we discuss our results and draw our con-
clusions.

II. MODELING

II.1. Growth of the instability

We begin by considering a two-layer rotating fluid as
shown in Fig. 2. The upper layer is denoted by a sub-
script 1 and the lower layer by a subscript 2. We assume
cylindrical polar coordinates with unit vectors er, eθ,
and ez in the radial, azimuthal, and vertical directions
respectively and take the rotation to be described by the
pseudovector Ω = Ω ez . The radius of the cylinder is
a, and the lid and base of the cylinder are at z = ±d.
The whole system may be accelerated vertically at a rate
g1. Ignoring the effects of viscosity, we write the rotating
Euler equation for the fluid in each layer as

Duj

Dt
= −

1

ρj
∇pj + g

∗ −Ω× (Ω× x)− 2Ω× uj, (1)

for j = 1, 2, where g
∗ = −(g + g1)ez and uj and x are

velocity and position vectors respectively, in the rotating
frame. For simplicity we drop the g1 notation and will
write g

∗ = −gez, with the understanding that g may
not be equal to the acceleration due to gravity, and may
change sign as a result of external bulk acceleration of
the system. When the fluid system is spun up into a
hydrostatic regime (in the rotating, non-inertial reference
frame) then uj ≡ 0 and

pj = p0 − ρj

{

gz −
Ω2

2
(r2 − 1

2a
2)

}

, j = 1, 2, (2)

where p0 is a constant reference pressure equal to the
pressure at the interface when the system is not rotating.
We take z = z0(r) to be the position of the interface
between the two fluid layers. In the absence of viscosity,
requiring the stress to be continuous across the interface
is equivalent to requiring continuity of pressure across the
interface. Hence we may write p1 = p2 on z = z0(r), and
it follows that the interface is an isobar on which pj = p0
and has profile given by

z0(r) =
Ω2(r2 − 1

2a
2)

2g
, (3)
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FIG. 2: Two layers of incompressible fluid of density ρ1
and ρ2 occupy a cylindrical tank of radius a that is

being accelerated [see 24] at a rate g1. When the tank is
not rotating we take the interface between the fluids to
be at z = 0 (coordinates moving with the tank), the
base of the tank at z = −d and the lid of the tank at
z = d. The tank is spun up to have a constant angular
velocity Ω about the z-axis. The isobar describing the

interface is given by z = z0(r) where
z0(r) = Ω2(r2 − 1

2a
2)/(2g) and p = p0 on z = z0(r). The

meridional plane is split into two domains, D1 and D2

representing the upper and lower layers respectively
(shaded gray).

constrained by
∫ a

0
z0(r)r dr = 0 to ensure that the fluid

layers are of equal depth. The shape and position of the
interface are independent of the densities of the fluid in
the upper and lower layers. Hence, whilst the value of p0
and the stability of the interface may change according as
to whether ρ1 < ρ2 or vice-versa, the profile remains the
familiar ‘concave’ paraboloid such as may be observed at
the free surface of a vigorously stirred beverage.

Following Taylor [24] we investigate the development
of the Rayleigh-Taylor instability under rotation by con-
sidering the development of a perturbation to the in-
terface. The strength of a stratification can be char-
acterized by an Atwood number, defined here as A =
(ρ2−ρ1)/(ρ2+ρ1). Using this definition we have that for
a stable stratification A > 0 and for an unstable stratifi-
cation A < 0 [n.b., in experimental investigations of the
Rayleigh-Taylor instability, many authors, dealing only
with unstable flows, define the Atwood number with op-
posite sign]. The amplitude of the perturbation and the
velocity and pressure deviation from the hydrostatic are
all assumed to be small. We describe the fluid velocity

and pressure perturbations in terms of a scalar poten-
tial, unifying the approaches of Taylor [24], in modeling
the non-rotating Rayleigh-Taylor instability, and Miles
[12, 13], in modeling surface waves on a rotating fluid.
Taylor [24] used a standard velocity potential and Miles
[13] used an ‘acceleration potential’ of the kind proposed
by Poincaré [14]. Here we make use of the ‘generalized
potential’ described by Hart [7]. Specifically, for an in-
terface perturbation

z = z0(r) + ǫ ζ(r, θ, t), (4)

where ǫ|ζ| ≪ d, we take the velocity perturbation to the
hydrostatic background to be

uj = ǫ

{

(

1 +
1

4Ω2

∂2

∂t2

)

∇φj −
1

2Ω

∂

∂t
(ez×∇φj)

+ ez×(ez×∇φj)

}

, (5)

for j = 1, 2, and the pressure to be

pj = p0 − ρjg [z − z0(r)]− ǫρj

{

∂φj

∂t
+

1

4Ω2

∂3φj

∂t3

}

, (6)

for j = 1, 2.
Substitution of (5) and (6) into (1) shows that the ro-

tating Euler equation is satisfied at leading order by the
order 1 hydrostatic pressure terms and at order ǫ by the
generalized potential φ. (We note that both the present
formulation, and that of Miles [12, 13], necessarily im-
ply a swirl component to the flow as soon as the radial
velocity is non-zero.) By further assuming that the fluid
in each layer is incompressible, i.e., ∇·uj = 0, we obtain
the governing wave equation for each fluid layer

{

∂2
t∇

2 + 4Ω2∂2
z

}

φj = 0, j = 1, 2. (7)

Solutions to this type of wave equation in the context of
inertial waves and internal gravity waves are well-known
[see, e.g., 10, and references therein].
We seek to solve the governing equation (7) together

with the following boundary conditions: that there is no
flow through the tank walls, an impermeability condition
given by

u · er = 0, on r = a,
u · ez = 0, on z = ±d.

}

(8)

We also require that the velocity on the axis of rotation,
r = 0, is sufficiently regular, specifically that

r∂φ2
j/∂r → 0 as r → 0, (9)

(this condition allows for finite fluid velocities across the
axis of rotation); and finally, we require continuity of
stress across the interface. In the absence of viscosity we
therefore require

p
∣

∣

+

−
= 0, across z = z0(r) + ǫζ(r, θ, t). (10)
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Since ζ is unknown we require the kinematic condition
that the interface moves with the local fluid velocity to
close the system:

D

Dt
(z0 + ǫζ) = u · ez , on z = z0(r) + ǫζ(r, θ, t). (11)

Following Taylor [24] and Miles [13] we adopt a vari-
ational formulation and seek normal mode solutions of
the form

φ = φ̂(r, z) exp{i (ωt+mθ)}, ζ = ζ̂(r) exp{i (ωt+mθ)},
(12)

wherem ∈ N0 is an azimuthal wavenumber. Substitution
into (7) yields the governing equation

1

r

∂

∂r

(

r
∂φ̂j

∂r

)

−
m2

r2
φ̂j +

(

1− µ2
) ∂2φ̂j

∂z2
= 0, j = 1, 2,

(13)
where we adopt Miles’ [13] notation by defining µ =
2Ω/ω. The boundary conditions (8) and (9) become

r∂φ̂2
j/∂r → 0 as r → 0,

r∂φ̂j/∂r + µmφ̂j = 0, on r = a,

∂φ̂j/∂z = 0, on z = ±d,







(14)

where the plus or minus is taken according to whether j =
1 or 2 respectively. The condition of pressure continuity
across the interface (10) yields at order ǫ

iωµ2ζ̂ =
2Ω2

g

(

1−
1

µ2

)(

1 + A

A
φ̂2 −

1− A

A
φ̂1

)

,

(15)
on z = z0(r). The kinematic condition (11) at order ǫ
can be written as

iωµ2ζ̂ = z′0

(

∂φ̂j

∂r
+

µm

r
φ̂j

)

−
(

1− µ2
) ∂φ̂j

∂z
, j = 1, 2,

(16)
on z = z0(r) for each layer, where z′0 ≡ dz0/dr.

The variational functional Φ[φ̂1, φ̂2] is defined by mul-

tiplying the governing equation (13) by ρj φ̂j and inte-
grating over the domain D = D1 ∪ D2 = [0, a] × [−d, d]
(see Fig. 2) so that

Φ =

∫

D

ρφ̂

{

1

r

∂

∂r

(

r
∂φ̂

∂r

)

−
m2

r2
φ̂+ (1 − µ2)

∂2φ̂

∂z2

}

dA.

(17)
Following the method outlined in Miles [13] we write the
integral (17) in conservative form giving

Φ =

∫

D

ρ

[

1

r

∂

∂r

(

rφ̂
∂φ̂

∂r

)

+ (1 − µ2)
∂

∂z

(

φ̂
∂φ̂

∂z

)]

dA

−

∫

D

ρ





(

∂φ̂

∂r

)2

+
m2

r2
φ̂2 + (1− µ2)

(

∂φ̂

∂z

)2


dA.

(18)

We consider the first integral in (18) and integrate over
D1 and D2 separately. Defining I1 to be the integral over
D1 and I2 to be the integral over D2, we have

I1 =

∫ z0(a)

z0(0)

∫ r0(z)

0

ρ1
r

∂

∂r

(

rφ̂1
∂φ̂1

∂r

)

rdrdz

+

∫ d

z0(a)

∫ a

0

ρ1
r

∂

∂r

(

rφ̂1
∂φ̂1

∂r

)

rdrdz

+

∫ a

0

∫ d

z0(r)

ρ1(1− µ2)
∂

∂z

(

φ̂1
∂φ̂1

∂z

)

rdzdr, (19)

where r0(z) is the well-defined inverse of z0(r). Integrat-

ing and enforcing the boundary conditions ∂φ̂1/∂z|z=d =

0, (r∂φ̂1/∂r+µmφ̂1)|r=a = 0, and r∂φ̂2
1/∂r → 0 as r → 0

implies

I1 = ρ1

∫ z0(a)

z0(0)

rφ̂1
∂φ̂1

∂r

∣

∣

∣

∣

∣

r=r0(z)

dz

− ρ1µm

∫ d

z0(a)

φ̂2
1

∣

∣

∣

r=a
dz

− ρ1(1 − µ2)

∫ a

0

φ̂1
∂φ̂1

∂z

∣

∣

∣

∣

∣

z=z0(r)

rdr. (20)

Transforming the first term in (20) by making the sub-
stitution z = z0(r) gives the result

I1 = −ρ1µm

∫ d

z0(a)

φ̂2
1

∣

∣

∣

r=a
dz

+ ρ1

∫ a

0

φ̂1

{

z′0
∂φ̂1

∂r
− (1− µ2)

∂φ̂1

∂z

}
∣

∣

∣

∣

∣

z=z0(r)

r dr.

(21a)

Following a similar procedure, we may also show

I2 = −ρ2µm

∫ z0(a)

−d

φ̂2
2

∣

∣

∣

r=a
dz

− ρ2

∫ a

0

φ̂2

{

z′0
∂φ̂2

∂r
− (1− µ2)

∂φ̂2

∂z

}∣

∣

∣

∣

∣

z=z0(r)

r dr.

(21b)

Eliminating the interface perturbation, ζ, from the pres-
sure continuity condition (15) and the kinematic condi-
tion (16) we see that

z′0
∂φ̂j

∂r
− (1− µ2)

∂φ̂j

∂z
= −z′0

µm

r
φ̂j

+
2Ω2

g

(

1−
1

µ2

)(

1 + A

A
φ̂2 −

1− A

A
φ̂1

)

, (22)

for j = 1, 2 on z = z0(r). Thus, we may rewrite (21a,b)
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as

I1 = −ρ1µm

∫ d

z0(a)

φ̂2
1

∣

∣

∣

r=a
dz

+

∫ a

0

ρ1φ̂1

{

2Ω2

g

(

1−
1

µ2

)(

1 + A

A
φ̂2 −

1− A

A
φ̂1

)

−z′0
µm

r
φ̂1

}∣

∣

∣

z=z0(r)
rdr, (23a)

I2 = −ρ2µm

∫ z0(a)

−d

φ̂2
2

∣

∣

∣

r=a
dz

−

∫ a

0

ρ2φ̂2

{

2Ω2

g

(

1−
1

µ2

)(

1 + A

A
φ̂2 −

1− A

A
φ̂1

)

−z′0
µm

r
φ̂2

}∣

∣

∣

z=z0(r)
rdr. (23b)

Substituting (23) into (18) we have that

Φ[φ1, φ2] = −ρ1µm

∫ d

z0(a)

φ̂2
1

∣

∣

∣

r=a
dz

+

∫ a

0

ρ1φ̂1

{

2Ω2

g

(

1−
1

µ2

)(

1 + A

A
φ̂2 −

1− A

A
φ̂1

)

−z′0
µm

r
φ̂1

}∣

∣

∣

z=z0(r)
rdr − ρ2µm

∫ z0(a)

−d

φ̂2
2

∣

∣

∣

r=a
dz

−

∫ a

0

ρ2φ̂2

{

2Ω2

g

(

1−
1

µ2

)(

1 + A

A
φ̂2 −

1− A

A
φ̂1

)

−z′0
µm

r
φ̂2

}∣

∣

∣

z=z0(r)
rdr

−

∫

D1

ρ1





(

∂φ̂1

∂r

)2

+
m2

r2
φ̂2
1 + (1− µ2)

(

∂φ̂1

∂z

)2


dA

−

∫

D2

ρ2





(

∂φ̂2

∂r

)2

+
m2

r2
φ̂2
2 + (1− µ2)

(

∂φ̂2

∂z

)2


dA.

(24)

Taking the functional derivative of Φ with respect to, for

example, φ̂1, where δ1Φ ≡ Φ[φ̂1 + δφ̂1, φ̂2] − Φ[φ̂1, φ̂2]
yields, after some manipulation,

δ1Φ = 2ρ1

∫

D1

{

1

r

∂

∂r

(

r
∂φ̂1

∂r

)

−
m2

r2
φ̂1 +

(

1− µ2
) ∂2φ̂1

∂z2

}

δφ̂1dA

− 2ρ1

∫ d

z0(a)

{

µmφ̂1 + r
∂φ̂1

∂r

}

δφ̂1

∣

∣

∣

∣

∣

r=a

dz

+ 2ρ1

∫ a

0

{

2Ω2

g

(

1−
1

µ2

)(

1 + A

A
φ̂2 −

1− A

A
φ̂1

)

−z′0
µm

r
φ̂1 −

[

z′0
∂φ̂1

∂r
− (1 − µ2)

∂φ̂1

∂z

]}

δφ̂1

∣

∣

∣

∣

∣

z=z0(r)

rdr.

(25)

So we see that the functional Φ is stationary with respect

to first-order variations of φ̂1 about the solution of the
governing equation (13) in D1, the boundary condition
(22) for j = 1 at the interface z = z0(r) and at the no-
radial flow condition at r = a on the boundary of D1.
Similarly, Φ is stationary with respect to first-order vari-

ations of φ̂2 about the solution of the governing equation
(13) in D2, the boundary condition (22) for j = 2 at
the interface z = z0(r) and the no-radial flow condition
at r = a on the boundary of D2. (The Euler-Lagrange
equation for Φ as expressed in (17) is the governing equa-
tion (13) multiplied by 2ρj .) Following Miles [13] we
pose trial solutions that satisfy the governing equation
(13), the regularity condition at r = 0 and the boundary
conditions on r = a and z = ±d exactly, and invoke the
variational principle only in respect to the final boundary
condition on z = z0(r).

If φ̂ is an exact solution of the governing equation (13),

it follows from the definition of Φ that Φ(φ̂) = 0. There-

fore, if φ̂ is a solution of (13), it follows from (18) and
(21) that

∫

D

ρ





(

∂φ̂

∂r

)2

+
m2

r2
φ̂2 + (1− µ2)

(

∂φ̂

∂z

)2


dA =

− ρ1µm

∫ d

z0(a)

φ̂2
1

∣

∣

∣

r=a
dz − ρ2µm

∫ z0(a)

−d

φ̂2
2

∣

∣

∣

r=a
dz

+

∫ a

0

ρ1φ̂1

{

z′0
∂φ̂1

∂r
− (1 − µ2)

∂φ̂1

∂z

}∣

∣

∣

∣

∣

z=z0(r)

rdr

−

∫ a

0

ρ2φ̂2

{

z′0
∂φ̂2

∂r
− (1− µ2)

∂φ̂2

∂z

}∣

∣

∣

∣

∣

z=z0(r)

rdr. (26)

Substituting (26) into (24) we therefore have, after sim-
plification

Φ ∝

∫ a

0

{

ω2

[

1 + A

A
φ̂2 −

1− A

A
φ̂1

]2

+

[

Ω2

1− µ2

(

r
∂

∂r
+ 2µm

)

− g
∂

∂z

]

[

1 + A

A
φ̂2
2 −

1− A

A
φ̂2
1

]}

∣

∣

∣

∣

∣

z=z0(r)

r dr. (27)

The constant of proportionality is (ρ2 − ρ1)(1 − µ2)/4g,
but as interest is focussed upon stationary values of Φ,
it will be disregarded. The expression in (27) is the two-
layer equivalent of the functional given in (3.2) of Miles
[13] and it can be seen that Miles’ expression is recovered
in the limit A = 1 (the stable single layer limit). The
cross term in the first term of the integrand is crucial in
coupling the behavior of the two fluid layers.
Again, following Miles [13], we seek to construct a

series solution based on trial solutions of the form

φ̂jn(r, z) = Jm

(

knr

a

)

cosh

(

kn
a

[z ∓ d]
√

1− µ2

)

, (28)
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for n = 1, 2, . . ., where Jm is a Bessel function of the first
kind and we take the minus or plus sign in (28) according
to whether j = 1 or 2 respectively. The trial solutions
(28) satisfy both the governing equation (13) and the
vertical impermeability boundary conditions at z = ±d.
The radial impermeability boundary condition at r = a
sets the possible modes of solution and so in general we
sum over the countable number of solutions, kn, of

kJm+1(k) = m(1 + µ)Jm(k), (29)

which follows from substituting (28) into (14) and setting
r = a. (The ratio kn/a may be regarded as the radial
wavenumber associated with the nth mode.) The trial
solutions (28) form a complete set over D (and are or-
thogonal in each layer when µ = 0), and so as the number
of terms in the series increases we approach a full solution
[13]. (See Finlayson [4] for a description of this classi-
cal approach, and its relation to the method of weighted

residuals.) Thus, we approximate φ̂1 and φ̂2 by

φ̂j ≈ φ̂
(N)
j =

N
∑

n=1

cjn φ̂jn, j = 1, 2, for some N > 1.

(30)
We adopt a variational approach applied to (27) in order
to find the coefficients cjn such that our solution sat-
isfies (22) on z = z0(r), the remaining unsatisfied con-
dition. Specifically, by seeking stationary values of the
functional Φ, by taking the partial derivatives ∂Φ/∂cjn,
j = 1, 2, n = 1, . . . , N , we may construct 2N linear equa-
tions in the 2N coefficients. The eigenvalue equation for
ω is found by setting the determinant of this linear sys-
tem to be zero. If ω has a negative imaginary part then
(12) implies growth, and the onset of the Rayleigh-Taylor
instability.
In the remainder of §II we initially consider purely ax-

isymmetric instabilities, first asymptotically for low ro-
tation rates in §II.2.1–II.2.3, and then numerically for ar-
bitrary rotation rates in §II.2.4. We then consider asym-
metric instabilities, firstly asymptotically for low rotation
rates in §II.3.1–II.3.3, and then numerically for arbitrary
rotation rates in §II.3.4 and §II.3.5.

II.2. Axisymmetric instability, m = 0

In the first instance we consider purely axisymmetric
motion: the special case m = 0. Setting m = 0 in (29)
shows that we sum over the zeros of J1(k), which implies
k ∈ R.

II.2.1. Single mode, low rotation rate, gravity wave

solutions: asymptotics

Following Miles [13], we initially consider a solution
containing a single trial solution each in the upper and
lower layers. We further assume a low rotation rate such
that α = Ω2a/g ≪ 1. Using such an approximation Miles

was able to explain the discrepancies between the theory
of Lamb [8] and the experimental observations of Fultz
[6, Fig. 12] and so we adopt this level of approximation
for initial investigation. Seeking an asymptotic expres-
sion for the eigenvalue equation for ω, we take (28) for
some single n ∈ N. By considering ∂Φ/∂c1n = 0 and
∂Φ/∂c2n = 0, and expanding in powers of α we find, af-
ter some significant manipulation, that an eigenvector of
the solution is

c ∝
(

1,−1− 1
6 coth(knδ)α+O(α2)

)

, (31)

where δ = d/a, and the eigenvalue equation for ω is

ω2 ∼ gA
kn
a

tanh(knδ) + 2Ω2 [1 + 2knδcsch(2knδ)

−
1

24
k2nA

2sech2(knδ)

]

+
g

a
O(α2). (32)

We observe therefore that if gA < 0 then ω2 < 0 and
interfacial perturbations will grow rather than oscillate
– the Rayleigh-Taylor instability. The form of (32) sug-
gests we may be able to suppress this growth to some
extent by rotating the system, i.e., the second term in
(32) may be used to compete with the first if it has the
opposing sign. However, it would be mistaken to suggest
that (32) implies that given a sufficient rotation rate an
unstable mode could be fully stabilized (ω2 > 0), as is
concluded erroneously by Sharma et al. [20] in the con-
text of particle laden Rayleigh-Taylor instability. The ex-
pansion (32) is asymptotic and its validity breaks down
when the second term is comparable to the first. The cor-
rect approach is to consider an expansion when ω, not Ω,
is small compared to (a/g)1/2 (see §II.2.3). The expres-
sion in (32) is the first of two key results we present.
It is the dispersion relation for a slowly rotating two-
layer fluid system that may be either stably stratified, or
Rayleigh-Taylor unstable.
Whether the growth rate of a given wave mode is re-

duced or increased by rotation depends on the sign of the
second term in (32). Provided |A |/δ <

∼
8.72 then there

are no solutions for which the second term in (32) can
be made negative, and so the effect of rotation is always
to initially suppress a given wave mode. (The threshold
coefficient, c ≈ 8.72, is given by

c2 =
24

ξ20

[

ξ0 coth ξ0 + cosh2 ξ0
]

,

where

ξ0 [sinh(4ξ0)− 2ξ0] = 2 [sinh(2ξ0) + ξ0]
2
,

giving ξ0 ≈ 1.39.) However, if |A |/δ >
∼
8.72, indicating

a sufficiently strong stratification, or sufficiently shallow
aspect ratio, then there may exist wave modes which are
excited by rotating the system. For example, A = − 1

2 ,

δ = 1
18 , n = 7 gives |A |/δ = 9 > c, k7 ≈ 22.76 and

the second term of (32) is approximately −0.14, i.e., the
seventh mode is excited rather than suppressed as the
first six modes are.
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Rather than considering the limit of low rotation rate,
α ≪ 1, we may substitute (28) into (27) with m = 0
and take δ → ∞, which may be thought of as forcing a
horizontal initial interface, rather than parabolic, to find

ω4 − 4Ω2ω2 − ω4
0 = 0, where ω2

0 = gA
kn
a
, (33)

the solution of which, selecting the physically appropri-
ate branch by introducing the factor A /|A |, is Chan-
drasekhar’s solution [3, eqs. 162, 163] given by

ω2 = 2Ω2 +
A

|A |

√

4Ω4 + ω4
0, (34)

in the present notation.
If the vertical coordinate, z, is scaled by the layer

depth, d, and the radial coordinate, r, is scaled by the
domain radius, a, then the nondimensional form of (3) is

z⋆0(r
⋆) =

α

2δ

(

r⋆2 −
1

2

)

, (35)

where superscript stars denote nondimensional quanti-
ties. It follows from (35) that for the interface between
the two fluid layers to be horizontal, i.e., z⋆0(r

⋆) = const.,
then either α = 0 and the system is not rotating, or we
are considering the limit δ → ∞. Hence we may inter-
pret the approximation of Chandrasekhar [3], that the
system is rotating, but has a horizontal initial interface,
as considering the special case of d → ∞, a → ∞, with in-
finite aspect ratio, δ → ∞. We can expect therefore that
when we have large aspect ratio, δ, and moderate values
of α, (34) will be a better approximation to ω than the
asymptotic expansion (32) since no small rotation rate
approximation has been made in the case of (34). (We
note that the two solutions (32) and (34) coincide, as
they must, if δ ≫ 1, α ≪ 1.)

II.2.2. Single mode, low rotation rate, inertial wave

solutions: asymptotics

We show the presence of inertial waves when ω2 ∼
O(α). We consider ∂Φ/∂c1,n = 0 and ∂Φ/∂c2,n = 0 for a
single n ∈ N, but specifically seek solutions for which ω2

does not have an order 1 contribution, but has a leading
order contribution at O(α).
In order to ensure that ω2 has no leading order contri-

bution we find that we must satisfy

sinh

(

2knδ
√

1− µ2

)

∼ O(α), (36)

which requires

ω2a

g
∼

4α

1 + [2knδq]2
+O(α2), (37)

where δq = δ/qπ, for ±q = 1, 2, . . .. The frequencies
associated with these wave modes depend upon whether

q is even or odd. For q odd

ω2a

g
∼

4α

1 + [2knδq]2

{

1∓
[2knδq]

2

1 + [2knδq]2
α

6δ
+O(α2)

}

,

(38)
where the minus or plus sign is taken according as
to whether the wave occurs mainly in the upper or
lower fluid respectively. The eigenvectors correspond
to waves occurring either in predominantly the upper
fluid, c = (1,O(α2)), or predominantly the lower fluid,
c = (O(α2), 1).
For q even

ω2a

g
∼

4α

1 + [2knδq]2

{

1−
[2knδq]

2

(1 + [2knδq]2)
2

1

A

[

(4δq)
2

±
1

6

{(

1 + [2knδq]
2
) (

1 + [2knδq]
2 − 12(4δq)

2
)

A
2

+36(4δq)
4
}1/2

]

α

δ
+O(α2)

}

. (39)

It is straightforward to show that when A = 1, δq is re-
placed by δq/2, and the minus sign is chosen in (39) (cor-
responding to the flow taking place in the lower fluid) the
solution in (4.13) Miles [13] is recovered. The solutions
Miles found correspond to the even q solutions; hence δq
must be replaced by δq/2 above for comparison. For even
q the associated eigenvector is

c =

(

1,
1

6 (1 + A ) (4δq)2

{

A
(

1 + [2knδq]
2 − 6(4δq)

2
)

∓
[

A
2
(

1 + [2knδq]
2
) (

1 + [2knδq]
2 − 12(4δq)

2
)

+36(4δq)
4
]1/2

}

+O(α)
)

. (40)

The odd q solutions are present for all values of A

including the special case A = 1.

II.2.3. Single mode, critical rotation rate for stabilization

A critical rotation rate, Ωc, for which a single gravity
wave mode is stable for Ω > Ωc and unstable for Ω < Ωc

can be found by considering an asymptotic expansion of
Φ as a series in ω2a/g. Near the stability threshold we
are in a regime ω2a/g ≪ 1 and thus an expansion to
the first two terms of the series can be used to find the
critical rotation rate.
We have that for m = 0, kn is such that J1(kn) = 0

and so using the following results

∫ 1

0

J 2
0 (knx)

J 2
0 (kn)

xdx =
1

2
,

∫ 1

0

J 2
0 (knx)

J 2
0 (kn)

x3 dx =
1

6
,

∫ 1

0

J0 (knx)J1 (knx)x
2 dx = 0, (40 a–c)

we may show that if α = α0 + aω2α1/g + . . ., to leading
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order the variational function Φ is proportional to

ω2a

g

{

[

1− A

A
c1n −

1 + A

A
c2n

]2

+
1− A

2A

[

k2n
12

+
δk2n
α0

]

c21n −
1 + A

2A

[

k2n
12

−
δk2n
α0

]

c22n

}

.

(41)

It follows that for non-trivial solutions of ∂Φ/∂c1n = 0
and ∂Φ/∂c2n = 0 we require to leading order

{

1− A

A
+

1

2

[

k2n
12

+
δk2n
α0

]}

×

{

1 + A

A
−

1

2

[

k2n
12

−
δk2n
α0

]}

−
1− A 2

A 2
= 0, (42)

at the instability threshold ω = 0 and hence α = α0.
Thus, we may solve (42) for α0 = αc, the critical value of
α that yields ω = 0. Hence, we find the critical rotation
rate Ωc to be given exactly by

Ω2
ca

g
=

6δ

A

(

1−
k2n
48

)−1

×

[

{

1−
k2nA 2

12

(

1−
k2n
48

)}1/2

− 1

]

. (43)

This result does not depend on exploiting a small rota-
tion rate or other small external parameter and so is not
asymptotic and is therefore true in general. Since Ωc ∈ R,
(43) only applies for −1 6 A < 0, i.e., a critical rotation
rate only exists if the fluid layers would be Rayleigh-
Taylor unstable in a non-rotating regime, as might be
anticipated on physical grounds. Under this condition on
A , (43) can be shown to be a strictly monotonically in-
creasing function in kn, bounded such that αc ∈ [0, 12δ).
A key observation from (43) is that the monotonic de-

pendence of αc on kn means that for a given rotation rate
all structures larger than the critical wavelength associ-
ated with kn are stabilised, whereas all structures smaller
than the critical wavelength remain unstable. This is in
keeping with the physical arguments presented earlier in
the introduction.
There exists a threshold rotation rate α = 4δ, where

the hydrostatic interface intersects the lid and the base
of the domain and, as a result, the assumed form of φ
no longer satisfies the boundary conditions at z = ±d.
So, although it follows from (43) that for a given radial
wavenumber, kn, there exists a critical rotation rate for
stabilization, it is not guaranteed that this critical ro-
tation rate is less than the threshold rotation rate 4δ.
That is to say, although (43) implies that since there are
no growing axisymmetric modes for −1 6 A < 0 when
Ω2

ca/g > 12δ, suggesting all axisymmetric modes may
therefore be made indefinitely stable, this absolute crit-
ical rotation rate cannot be attained before the model
breaks down.

In summary, (43) shows that for a given rotation rate
there exists a critical wavelength, above which all ax-
isymmetric modes are stable, but below which all short
wavelength modes remain unstable.
Chandrasekhar [3, Chap.X §95] considers the special

case of a two-layer stratification of semi-infinite fluids
with a horizontal interface and states that

‘. . . it follows that in the present case rotation
does not affect the instability or stability, as
such, of a stratification . . . ’.

The critical rotation rate given in (43) shows that Chan-
drasekhar’s (1961) result is a special case and not true
in general for purely axisymmetric flows, supporting
Carnevale et al. [2]. The case of two semi-infinite fluids
superposed is given by taking the limits a → ∞, d → ∞.
The assumption of a horizontal interface implies that
these limits should be taken such that δ = d/a → ∞.
Taking the limit δ → ∞ in (43) shows that there is in-
deed no finite critical rotation rate to stabilize a given
unstable mode as δ → ∞ since Ωc → ∞.
Result (43) is the second key result presented here and

shows that, for finite aspect ratio flows, it is possible
to completely suppress some Rayleigh-Taylor unstable
modes by rotating the system.

II.2.4. Single mode, arbitrary rotation rate solutions:

numerics

In order to obtain results at arbitrary rotation rate
we proceed using a hybrid of analytical and numerical
methods, whereby evaluation of integrals is carried out
using Simpson’s rule. For N = 1, n = 1 we construct
the matrix of coefficients of cjn from the linear equations
∂Φ/∂cjn = 0 for j = 1, 2. This yields a 2 × 2 matrix,
M, and the zeros of its determinant, corresponding to
possible solutions, are calculated numerically and plotted
in Fig. 3 for A = ± 1

2 , δ = 1
4 , 4. The zero rotation rate

solutions, as found by Taylor [24], are indicated by white
circles on the vertical axes. Selecting n = 1 gives k = k1,
the first zero of J1, and so we have k ≈ 3.83.
Inertial waves are present as a result of the rotation

and it can be seen that these solutions all converge at
the origin indicating that as the rotation rate tends to
zero these waves are not supported, consistent with their
definition. The first pair of inertial wave solutions, corre-
sponding to (38) with q = 1, are indicated by dot-dashed
lines extending away from the origin. The grayed-out
regions contain an infinite number of inertial waves cor-
responding to the higher values of q. Within this region
the numerical contouring of |M| = 0 fails and so the re-
gion has been grayed-out.
In the stable cases, A = 1

2 , shown in Fig. 3a, c, the
effect of the rotation on the gravity wave on the interface
is only to increase its frequency, hence the comments of
Miles [12] indicating that the effects of rotation are not
especially interesting for axisymmetric waves on a single
layer of fluid. The asymptotic gravity wave solutions (32)
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FIG. 3: Solutions of the eigenvalue problem, consistent with the assumptions of §II.1, describing the dispersion
relation for Atwood numbers A = ± 1

2 (stable and unstable respectively), δ = 1
4 , 4, N = 1, k = k1 ≈ 3.83. Solid lines

are the exact solution calculated numerically. The long-dashed lines correspond to Chandrasekhar’s solution (34).
(a) Stable: A = 1

2 , δ = 1
4 . The gravity wave solution coincides with the α = 0 axis at the value given by Taylor,

indicated by a circle. The asymptotic solution is shown dashed for α < 0.5 and continues dotted for larger values.
The first pair of inertial wave solutions (38) corresponding to q = 1 are shown (dot-dashed). The greyed region
contains an infinite number of possible inertial wave solutions corresponding to higher values of q. (b) Unstable:
A = − 1

2 , δ = 1
4 . On α = 0 the unstable growth is predicted by Taylor’s [24] result. It can be seen that as the

rotation rate α increases, one of the q = 1 inertial wave solutions coalesces with the gravity wave solution. The
critical rotation rate is predicted by (43) and is given by αc = 0.49. (c) A = 1

2 , δ = 4. With the increase in δ we see
an improvement between the full solution and Chandrasekhar’s solution, giving better agreement than the low

rotation rate asymptotics (32). (d) A = − 1
2 , δ = 4. There is excellent agreement with Chandrasekhar’s solution for

α < 5 compared with the low rotation rate asymptotics, but his solution remains in the unstable region as α → ∞,
unlike the full solution. The critical rotation rate, αc = 7.78, follows from (43). As in (b), one of the q = 1 inertial

wave solutions coalesces with the gravity wave solution.
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are shown as the dashed lines extending away from the
white circle on the vertical axes. They are shown dashed
for α < 0.5, after which we anticipate the approximations
being less good, as the errors are O(α2), and the solution
is thereafter shown as dotted.

In the unstable cases, A = − 1
2 , shown in Fig. 3b, d,

the effect of rotation on the k1 gravity wave at the in-
terface is to change the sign of ω2 from negative (un-
stable – Rayleigh-Taylor instability) to positive (stable –
standing wave solutions). The rotation is able to com-
pletely stabilize the mode for α > αc. It can be seen
that as the rotation rate is increased the gravity wave
solution coalesces with the dominant inertial wave solu-
tion. The predicted critical rotation rates are αc ≈ 0.49
for δ = 1

4 and αc ≈ 7.78 for δ = 4. It can be seen that
for moderate values of α there is significant improve-
ment in the agreement between the numerical solution
and Chandrasekhar’s [3] solution for the larger value of
δ, as expected (see §II.2.1). With the parameters used in
Fig. 3b, the asymptotic value of αc calculated for large
N is within 3.4% of that calculated using N = 1 modes,
as in (43).

It can be shown that as a result of (40 b), the key
results of §II.2, (32) and (43), are independent of the
Ω2/(1 − µ2) term in (27), the only term that has an ex-
plicit dependence on the profile z0(r). As the low ro-
tation rate approximation (32) and the critical rotation
rate (43) are independent of this term it follows that the
unstable solution branch for ω can be well-approximated
by neglecting this term. Indeed, for low to moderate At-
wood number (A <

∼

1
2 ) then

Φ ∝

∫ a

0

{

ω2
(

φ̂2 − φ̂1

)2

− gA
∂

∂z

(

φ̂2
2 − φ̂2

1

)

}
∣

∣

∣

∣

z=z0(r)

r dr

(44)
is a reasonable approximation to (27), with approximate
O(A 2) error. The calculated critical rotation rate for
the example considered in Fig. 3b using (44), as opposed
to (27), is αc = 0.45 compared to αc = 0.49, an error of
approximately 7.8%.

II.3. Non-axisymmetric instability, m 6= 0

We now consider the more general case which includes
non-axisymmetric modes. Here, the right hand side of
(29) can be non-zero, and so ω ∈ C, giving the possibil-
ity of both growth and precession of the instability. As
ω ∈ C it follows that k = k(Ω, ω) ∈ C in general. The
fact that k cannot be determined a priori for the whole
solution space increases the difficulty of calculating so-
lutions for the non-axisymmetric cases compared to the
axisymmetric cases.

II.3.1. Single mode, low rotation rate, gravity wave

solutions: asymptotics

To find the corresponding low rotation rate asymp-
totics as in §II.2 we expand both ω and k in terms of α.
It follows from (29) for ω ∼ ω0 +ω1α

1/2 +ω2α+ . . . that

k

k0
∼ 1 +

2m

k20 −m2

(

αg

aω2
0

)1/2

−
2m

k20 −m2

[

(

aω2
1

g

)1/2

+
m
(

k20 +m2
)

(k20 −m2)
2

]

(

αg

aω2
0

)

+O(α3/2), (45)

where k0 ∈ R satisfies

k0Jm+1(k0) = mJm(k0). (46)

(Note that again there are a countable number of solu-
tions k0n but for clarity we will use the notation k0 and
understand that it may not be the first zero of (46).)
Substituting in and following a similar procedure to that
in §II.2, the first two terms for ω satisfy

aω2
0

g
= A k0 tanh(k0δ), (47a)

√

a

g
ω1 =

m

k20 −m2
[1 + 2k0δcsch (2k0δ)] . (47b)

The leading order term ω0 is unchanged from (32), noting
the change in definition of k0. The ω1 term is not present
in (32), as a result of m = 0 in the axisymmetric case.
However we note that ω1 ∈ R and so this term can play
no role in the growth or suppression of interfacial waves;
it is merely contributing a modification to the precession
velocity. We also note that ω1 is independent of A and
is therefore exactly the same as the first correction term
found by Miles [13, eq. (5.5)].
For comparison with the second term on the right hand

side of (32) we now calculate a(2ω0ω2 + ω2
1)/g and find

it to be

2

{

1−
2m2k20

(k20 −m2)
3 + 2k0δcsch (2k0δ)

×

[

1−
m2

(k20 −m2)2

(

k20 +m2

k20 −m2
+ 2k0δcoth (2k0δ)

)]

−
1

8
k20A

2sech (k0δ)
2

[

1 +
4

k20 −m2

×

(

m2

k20
cosh (k0δ)

2
− k20G(m, k0)

)]}

, (48)

where we use (40 a–c) and define

G(m, k) =

∫ 1

0

Jm(kx)2

Jm(k)2
x3 dx. (49)

Provided k0 is a solution of (46) then in the limit m → 0,
G(m, k0(m)) → 1

6 and we may recover the axisymmetric
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m = 0 term in (32) from (48). The associated eigenvector
with the solution described by (47) and (48) is

c =

(

1,−1−
k0
2

coth (k0δ)

×

[

1 +
4

k20 −m2

(

m2

k20
− k20G(m, k0)

)]

α+O(α2)

)

,

(50)

and we note that therefore to leading order the solution in
the lower layer is growing and precessing in the opposite
direction to the fluid in the upper layer, as might have
been anticipated.

It follows from (48) that ω2 ∈ C if ω0 ∈ C and so
may contribute to both precession and growth/decay.
Whether the growth rate of a wave mode is reduced or
increased by a small amount of rotation, compared to its
growth in a non-rotating system, is controlled by (48)
too, since ω1 ∈ R.

II.3.2. Single mode, low rotation rate, inertial wave

solutions: asymptotics

As with the axisymmetric case, for ω2 to have a leading
order contribution of O(α) we require (36) and hence
(37) to be satisfied. Writing ω ∼ ω1α

1/2 + ω2α+ . . . and
k ∼ k0 + k1α

1/2 + k2α+ . . . we have that

ω2
1a

g
=

4

1 + [2k0δq]2
for δq ≡

δ

qπ
, and q ∈ N.

(51)
The leading order balance of (29) is therefore

Jm+1(k0) =
m

k0

(

1 +
2

ω1

)

Jm(k0). (52)

Combining (51) and (52) we have that for a given m 6= 0
and δq, k0 must satisfy

1 + [2k0δq]
2 =

(

1−
k0
m

Jm+1(k0)

Jm(k0)

)2

. (53)

The solutions fall into two categories according as to
whether q is odd or even, as before. For q odd

ω2a

g
∼

4α

1 + [2k0δq]2

×

{

1∓
α[2k0δq]

2

2δ

(

1 + 4
[

δ2qm
2 −G(m, k0)

])

×

[

(

1 + 4δ2qm
2
) (

1 + [2k0δq]
2
)

−
8mδ2q
ω1

]

−1






. (54)

The expression for q-even is lengthy and so here we note
only the solutions for extreme values of δ. Specifically, if

q is even and m 6= 0, then for δ ≪ 1

ω2a

g
∼ 4α

{

1±
2δ2qα

δ

(

k20 [1− 4G(m, k0)] + 4m
)

+O(α2)

}

, (55)

and for δ ≫ 1

ω2a

g
∼ 4α

{

1

[2k0δq]2
±

α

δ

m

δqk30
+O(α2)

}

. (56)

A further, higher order, solution exists, provided m 6=
0, for k ∼ k0 +O(α) where Jm(k0) = 0 and

ω2a

g
∼

(

2m

k20δ

)2

α3

{

1−
α

2δ

[

4G+(m, k0)

− 1 +
4

k20

(

1±
2

A

)

]

+O(α2)

}

, (57)

where

G+(m, k) =

∫ 1

0

J 2
m(kx)

J 2
m+1(kx)

x3 dx. (58)

II.3.3. Single mode, critical rotation rate for stabilization

In §II.2.3 it was shown that for δ < ∞ there exists a
critical rotation rate, Ωc, above which an axisymmetric
wave mode can be stabilized for a given unstable Atwood
number. Here we show that such a critical rotation rate
does not exist in the case m 6= 0.
For m 6= 0 and Ω ∼ Ω0

[

1 + (Ω1/Ω0)ω +O(ω2)
]

, (29)
implies that

k

k0
∼ 1−

ω

2mΩ0
+O(ω2), where Jm(k0) = 0, (59)

noting that m 6= 0 changes the definition of k0 from the
axisymmetric definition Jm+1(k0) = 0, to Jm(k0) = 0.
The eigenvalue equation for Ω becomes

1− A 2

A 2

[

a2 mΩ0 J
2
m+1(k0)

]2
ω2 +O

(

ω3
)

= 0. (60)

It can be seen that there is no non-zero critical rotation
rate, Ω0, that can force the leading order term in (60) to
be zero. Therefore, unlike the axisymmetric m = 0 case,
there does not exist a critical rotation rate that can be
used to stabilize a given wave mode. However, a given
wave mode may still be suppressed (or indeed excited)
by rotation, but a change of stability cannot occur.

II.3.4. Single mode, arbitrary rotation rate solutions:

numerics

The solutions of the eigenvalue problem are calculated
numerically for N = 1, n = 1, δ = 1

4 , A = − 1
2 , and m =
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FIG. 4: (a) The constructed solution of |M| = 0 for ω ∈ C and A = − 1
2 , δ = 1

4 , N = 1, n = 1, m = 1 (solid lines).
(b)–(d) Are projections of the solution squared, for comparison with Fig. 3b. Bold solutions have non-zero

imaginary component. It can be seen that unstable wave modes are not stabilized by increasing the rotation rate,
but are suppressed initially. Asymptotic gravity wave approximations (47), (48) to the solution are shown

dot-dashed. (Inertial wave solutions not shown.)

1, 2, 3 (see Fig. 3b for comparison with the axisymmetric
case, m = 0).

The numerical solution was calculated by evaluating
the determinant of M for a given α over a plane ω ∈ C

(numerical integration was carried out using Simpson’s
rule). The zeros of the real part of |M| were contoured
and intersections with the zero contour of the imagi-
nary part of |M| were found. The solution was con-
structed by then allowing α to vary over the range [0, αT ]
(see Fig. 4a). Figs 4b–d are projections of the three-
dimensional solution to allow comparison with Fig. 3b.
The positive vertical axis shows a projection of ℜ(ω)2a/g

and the negative vertical axis shows a projection of
−ℑ(ω)2a/g so that the plots coincide with the axisym-
metric case when ω ∈ R or ω ∈ iR. It can be seen that
for m 6= 0 the dominant gravity wave solution is not able
to cross from the unstable lower half of the domain into
the stable upper half, unlike the m = 0 solution shown
in Fig. 3b.
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ℑ
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α
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0
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ℜ
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−
ℑ
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ω
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α

(b) m = 2
N = 2
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-4
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4

FIG. 5: Gravity wave solutions of |M| = 0 for A = − 1
2 ,

δ = 1
4 , m = 2 for N = 2 and n = 1, 2, i.e., k01 ≈ 3.054
and k02 ≈ 6.706. Bold solutions have non-zero
imaginary component. (a) Three-dimensional

representation of the solution: the most unstable
branches cross at α ≈ 1.505, where ω1 ≈ 1.514− 1.313i
and ω2 ≈ 0.189− 1.313i indicated by circles. (b) The

projected solutions for comparison with Fig. 3b.
Although αT = 1, the α axis has been extended to show

the possibility of rotation causing some modes to
become more unstable than others.

II.3.5. Multiple mode, arbitrary rotation rate solutions

Fig. 5 shows the possible wavemodes for A = − 1
2 ,

δ = 1
4 , m = 2, N = 2, and n = 1, 2. As the rotation

rate is increased the unstable gravity wave modes are
seen to be suppressed, though the suppression is greater

for the more unstable n = 2 mode. The plot shows that
suppressing a higher wavemode to such an extent that
it becomes more stable than a lower wavemode is possi-
ble since the solution’s projections cross (at α ≈ 1.505,
ℑ(ω) ≈ −1.313, shown as circles, though in this case
the crossing occurs for α > αT where the solution is not
strictly valid). Comparing Fig. 4c with Fig. 5b, it can be
seen that the addition of a single extra mode significantly
increases the number of possible modes of behavior.

II.4. Summary of key results

In §II.1 the approach developed by Miles [13] to model
surface waves on a rotating body of water was gener-
alised to the two-layer case, allowing for either a stable
(positive Atwood number) or an unstable (negative At-
wood number) initial stratification. The dispersion rela-
tion for axisymmetric perturbations at low rotation rates
was derived in §II.2, (32), which shows that gravitation-
ally unstable perturbations may be made less unstable
by rotating the system. This suggests that at least par-
tial suppression of the Rayleigh-Taylor instability may
be achieved through rotation of the system, though we
note that the dispersion relation (32) is only valid in the
low-rotation rate limit aΩ2/g ≪ 1. In §II.2.3 an exact re-
sult, (43), was found for the critical rotation rate required
to completely stabilise an otherwise gravitationally un-
stable axisymmetric wave mode. This critical rotation
rate depends on the aspect ratio of the system which is
the reason an exchange of stability was not found in the
model of Chandrasekhar [3]. The critical rotation rate
in (43) indicates that a rotation rate αc = 12δ is required
to stabilise all axisymmetric wave modes, but the model
solutions (28) are invalid for α > 4δ.
In §II.3 the dispersion relation for asymmetric wave

modes was derived (45)–(49). This dispersion relation
includes axisymmetric perturbations, m = 0, as a spe-
cial case. In the asymmetric case, m 6= 0, it was shown
that the wavenumber cannot be determined a priori, it
depends on both the rotation rate, Ω, and the mode fre-
quency, ω. The dispersion relation reveals, as might be
anticipated, that the mode frequency contains both real
and imaginary parts in general. Hence, the developing
instability is characterised by both a growth and a pre-
cession of a given wave mode. It was also shown, §II.3.3,
that a general critical rotation rate to stabilise an asym-
metric mode does not exist, unlike the axisymmetric case.

III. DISCUSSION AND CONCLUSIONS

We have considered theoretically the effects of rota-
tion upon the classical Rayleigh-Taylor instability. The
dispersion relation for interfacial disturbances at low ro-
tation rates (32) suggests that axisymmetric modes of
a developing Rayleigh-Taylor instability may have their
rate of growth inhibited by rotation. Indeed, if the crit-
ical rotation rate for the mode is below the threshold
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2(gd)1/2/a, then (43) indicates that the mode may be
stabilised indefinitely. Rotation was also seen in some
cases to be able to slow the growth of asymmetric modes.
We can understand our observations in the following

qualitative manner: a rotating fluid is known to organise
itself into coherent vertical structures aligned with the
axis of rotation, so-called ‘Taylor columns’ [23], whereas
a perturbation to an unstable two-layer density strati-
fication will lead to baroclinic generation of vorticity at
the interface, tending to break-up any vertical structures.
Hence the system under investigation undergoes compe-
tition between the stabilising effect of the rotation, that
is organising the flow into vertical structures and prevent-
ing the two fluid layers passing each other, and the desta-

bilising effect of the denser fluid overlying the lighter fluid
that generates an overturning motion at the interface.
With increased rotation rate the ability of the fluid layers
to move radially, with opposite sense to each other, in or-
der to rearrange themselves into a more stable configura-
tion, is increasingly prohibited by the Taylor-Proudman
theorem [see 15, 22]. The radial movement is therefore
reduced and the observed structures that materialize as
the instability develops are smaller in scale.
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[14] H. Poincaré, Sur l’équilibre d’une masse fluide animée

d’un mouvement de rotation. Acta Math. 7 (1), 259
(1885).

[15] J. Proudman, On the motion of solids in a fluid possessing
vorticity. Proc. Roy. Soc. Lond. A 92 (642), 408 (1916).

[16] Lord Rayleigh, Investigation of the character of the equi-
librium of an incompressible heavy fluid of variable den-
sity. Proc. Roy. Math. Soc. 14, 170 (1883).

[17] M. M. Scase and S. B. Dalziel, Internal wave fields and
drag generated by a translating body in a stratified fluid.
J. Fluid Mech. 498, 289 (2004).

[18] M. M. Scase and S. B. Dalziel, Internal wave fields gen-
erated by a translating body in a stratified fluid: an ex-
perimental comparison. J. Fluid Mech. 564, 305 (2006).

[19] M. M. Scase, K. A. Baldwin and R. J. A. Hill,
Magnetically-induced Rotating Rayleigh-Taylor Instabil-
ity. J. Vis. Expt. In Press (2016).

[20] P. K. Sharma, R. P. Prajapati, and R. K. Chhajlani, Ef-
fect of surface tension and rotation on Rayleigh-Taylor
instability of two superposed fluids with suspended par-
ticles. ACTA Physica Polonica A 118 (4), 576 (2010).

[21] J. J. Tao, X. T. He, W. H. Ye, and F. H. Busse, Nonlin-
ear Rayleigh-Taylor instability of rotating inviscid fluids.
Phys. Rev. E 87, 013001 (2013).

[22] G. I. Taylor, Motion of solids in fluids when the flow is
not irrotational. Proc. Roy. Soc. Lond. A 93 (648), 99
(1917).

[23] G. I. Taylor, Experiments on the motion of solid bodies in
rotating fluids. Proc. Roy. Soc. Lond. A 104, 213 (1923).

[24] G. I. Taylor, The instability of fluid surfaces when ac-
celerated in a direction perpendicular to their planes. I.
Proc. Roy. Soc. A 201, 192 (1950).

[25] C.-Y. Wang, and R. A. Chevalier, Instabilities in clump-
ing and type 1a supernova remnants. Astrophys. J.
549 (2), 1119 (2001).


