5,733 research outputs found

    Isotopic And Geochemical Investigations Of Meteorites

    Get PDF
    The primary goals of our research over the past four years are to constrain the timing of certain early planetary accretion/differentiation events, and to constrain the proportions and provenance of materials involved in these processes. This work was achieved via the analysis and interpretation of long- and short-lived isotope systems, and the study of certain trace elements. Our research targeted these goals primarily via the application of the Re-187, Os-187, Pt-190 Os-186 Tc-98 Ru-99 and Tc-99 Ru-99 isotopic systems, and the determination/modeling of abundances of the highly siderophile elements (HSE; including Re, Os, Ir, Ru, Pd, Pt, and maybe Tc). The specific events we examined include the segregation and crystallization histories of asteroidal cores, the accretion and metamorphic histories of chondrites and chondrite components, and the accretionary and differentiation histories of Mars and the Moon

    Some Concepts on the Use of Deflection Measurements for Evaluating Flexible Pavements

    Get PDF

    Automated identification of flagella from videomicroscopy via the medial axis transform

    Full text link
    Ubiquitous in eukaryotic organisms, the flagellum is a well-studied organelle that is well-known to be responsible for motility in a variety of organisms. Commonly necessitated in their study is the capability to image and subsequently track the movement of one or more flagella using videomicroscopy, requiring digital isolation and location of the flagellum within a sequence of frames. Such a process in general currently requires some researcher input, providing some manual estimate or reliance on an experiment-specific heuristic to correctly identify and track the motion of a flagellum. Here we present a fully-automated method of flagellum identification from videomicroscopy based on the fact that the flagella are of approximately constant width when viewed by microscopy. We demonstrate the effectiveness of the algorithm by application to captured videomicroscopy of Leishmania mexicana, a parasitic monoflagellate of the family Trypanosomatidae. ImageJ Macros for flagellar identification are provided, and high accuracy and remarkable throughput are achieved via this unsupervised method, obtaining results comparable in quality to previous studies of closely-related species but achieved without the need for precursory measurements or the development of a specialised heuristic, enabling in general the automated generation of digitised kinematic descriptions of flagellar beating from videomicroscopy.Comment: 10 pages, 5 figures. Author accepted manuscript. Supplementary Material available at https://doi.org/10.1038/s41598-019-41459-

    Re-Os Isotopic Constraints on the Chemical Evolution and Differentiation of the Martian Mantle

    Get PDF
    The (187)Re-187Os isotopic systematics of SNC meteorites, thought to be from Mars, provide valuable information regarding the chemical processes that affected the Martian mantle, particularly with regard to the relative abundances of highly siderophile elements (HSE). Previously published data (Birck and Allegre 1994, Brandon et al. 2000), and new data obtained since these studies, indicate that the HSE and Os isotopic composition of the Martian mantle was primarily set in its earliest differentiation history. If so, then these meteorites provide key constraints on the processes that lead to variation in HSE observed in not only Mars, but also Earth, the Moon and other rocky bodies in the Solar System. Processes that likely have an effect on the HSE budgets of terrestrial mantles include core formation, magma ocean crystallization, development of juvenile crust, and the addition of a late veneer. Each of these processes will result in different HSE variation and the isotopic composition of mantle materials and mantle derived lavas. Two observations on the SNC data to present provide a framework for which to test the importance of each of these processes. First, the concentrations of Re and Os in SNC meteorites indicate that they are derived from a mantle that has similar concentrations to the Earth's mantle. Such an observation is consistent with a model where a chondritic late veneer replenished the Earth and Martian mantles subsequent to core formation on each planet. Alternative models to explain this observation do exist, but will require additional data to test the limitations of each. Second, Re-Os isotopic results from Brandon et al. (2000) and new data presented here, show that initial yos correlates with variations in the short-lived systems of (182)Hf- (182)W and (142)Sm-142Nd in the SNC meteorites (epsilon(sub W) and epsilon(sub 142Nd)). These systematics require an isolation of mantle reservoirs during the earliest differentiation history of Mars, and subsequent inefficient mixing between these reservoirs. These data show that models for the origin of isotopic variation for SNC meteorites require at least two long-lived mantle reservoirs, and possibly three. The range in the projected present day gamma(sub Os) of these reservoirs is from -5.4+/-2.6, to +4+/-1. The isotopic systematics of these reservoirs may be linked to development of cumulate crystal piles in a Martian magma ocean and variable amounts of late stage intercumulus melt. In this model, fractional crystallization of olivine and possibly other phases with slightly subchondritic Re/Os, from a solidifying magma ocean, resulted in a lower Re/Os ratio early cumulates, and a resultant low gamma(sub Os). Later cumulates or evolved melts crystallized with higher Re/Os ratios to produce the mantle reservoir(s) with consequent higher gamma(sub Os). Crystallization of the Martian magma ocean followed earliest core formation, as indicated by the correlation of epsilon(sub W) with epsilon(sub 142Nd) and initial gamma(sub Os)

    Multiple roles for protein kinase C in gastropod embryogenesis

    Get PDF
    Protein kinase C (PKC) contributes to the correct development of organisms, but its importance to the embryogenesis of molluscs is not yet known. We report here that PKC activation is cyclic within early developing embryos of the gastropod snail Lymnaea stagnalis, and that activation with phorbol myristate acetate (PMA) results in disorganised and developmentally arrested embryos within 24 h. Moreover, chronic modulation of PKC activation by PMA or by the PKC inhibitor GF109203X in early embryos results in altered rotation and gliding behaviours and heartbeat during development. Finally, dis-regulation of PKC activity during early development significantly increased the duration to hatching. Our findings thus support novel roles for PKC in L. stagnalis embryos, in several physiological contexts, providing further insights into the importance of protein kinases for gastropod development in general

    Life on the Edge: Characterising the Edges of Mutually Non-dominating Sets

    Get PDF
    Copyright © 2014 Massachusetts Institute of TechnologyMulti-objective optimisation yields an estimated Pareto front of mutually nondominating solutions, but with more than three objectives understanding the relationships between solutions is challenging. Natural solutions to use as landmarks are those lying near to the edges of the mutually non-dominating set. We propose four definitions of edge points for many-objective mutually non-dominating sets and examine the relations between them. The first defines edge points to be those that extend the range of the attainment surface. This is shown to be equivalent to finding points which are not dominated on projection onto subsets of the objectives. If the objectives are to be minimised, a further definition considers points which are not dominated under maximisation when projected onto objective subsets. A final definition looks for edges via alternative projections of the set. We examine the relations between these definitions and their efficacy in many dimensions for synthetic concave- and convex shaped sets, and on solutions to a prototypical many-objective optimisation problem, showing how they can reveal information about the structure of the estimated Pareto front. We show that the “controlling dominance area of solutions” modification of the dominance relation can be effectively used to locate edges and interior points of high-dimensional mutually non-dominating sets

    Rank-based dimension reduction for many-criteria populations

    Get PDF
    Copyright © 2011 ACM13th annual conference on Genetic and Evolutionary Computation (GECCO '11), Dublin, Ireland, 12-16 July 2011Interpreting individuals described by a set of criteria can be a difficult task when the number of criteria is large. Such individuals can be ranked, for instance in terms of their average rank across criteria as well as by each distinct criterion. We therefore investigate criteria selection methods which aim to preserve the average rank of individuals but with fewer criteria. Our experiments show that these methods perform effectively, identifying and removing redundancies within the data, and that they are best incorporated into a multi-objective algorithm

    Visualising Mutually Non-dominating Solution Sets in Many-objective Optimisation

    Get PDF
    Copyright © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.As many-objective optimization algorithms mature, the problem owner is faced with visualizing and understanding a set of mutually nondominating solutions in a high dimensional space. We review existing methods and present new techniques to address this problem. We address a common problem with the well-known heatmap visualization, since the often arbitrary ordering of rows and columns renders the heatmap unclear, by using spectral seriation to rearrange the solutions and objectives and thus enhance the clarity of the heatmap. A multiobjective evolutionary optimizer is used to further enhance the simultaneous visualization of solutions in objective and parameter space. Two methods for visualizing multiobjective solutions in the plane are introduced. First, we use RadViz and exploit interpretations of barycentric coordinates for convex polygons and simplices to map a mutually nondominating set to the interior of a regular convex polygon in the plane, providing an intuitive representation of the solutions and objectives. Second, we introduce a new measure of the similarity of solutions—the dominance distance—which captures the order relations between solutions. This metric provides an embedding in Euclidean space, which is shown to yield coherent visualizations in two dimensions. The methods are illustrated on standard test problems and data from a benchmark many-objective problem
    corecore