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Abstract
Multi-objective optimisation yields an estimated Pareto front of mutually non-
dominating solutions, but with more than three objectives, understanding the rela-
tionships between solutions is challenging. Natural solutions to use as landmarks are
those lying near to the edges of the mutually non-dominating set. We propose four def-
initions of edge points for many-objective mutually non-dominating sets and examine
the relations between them. The first defines edge points to be those that extend the
range of the attainment surface. This is shown to be equivalent to finding points which
are not dominated on projection onto subsets of the objectives. If the objectives are to
be minimised, a further definition considers points which are not dominated under
maximisation when projected onto objective subsets. A final definition looks for edges
via alternative projections of the set. We examine the relations between these defini-
tions and their efficacy in many dimensions for synthetic concave- and convex-shaped
sets, and on solutions to a prototypical many-objective optimisation problem, showing
how they can reveal information about the structure of the estimated Pareto front. We
show that the “controlling dominance area of solutions” modification of the dominance
relation can be effectively used to locate edges and interior points of high-dimensional
mutually non-dominating sets.

Keywords
Many-objective optimisation, dominance, edges, preference ordering, visualisation.

1 Introduction

As optimisation algorithms become capable of tackling multi-objective problems with
at least four objectives, often called many-objective problems, it becomes important to
find ways of understanding and visualising the solutions in the approximation to the
many-objective Pareto front (Ishibuchi et al., 2008). Recently a number of methods have
been developed to map high-dimensional sets of mutually non-dominating of solutions
to the plane or three dimensions for visualisation (e.g., Obayashi, 2002; Yoshikawa
et al., 2007; Tušar and Filipič, 2011; Kudo and Yoshikawa, 2012; Walker et al., 2013;
Fieldsend and Everson, 2013). However, the inevitable loss of information concomitant
with the dimension reduction means that the problem owner or decision maker may
need help in navigating the visualisation. One way of doing that is to identify landmark
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Figure 1: A two objective mutually non-dominating set with the two extremal individ-
uals, corresponding to the edges, marked with circles.

solutions—individuals with known properties—against which other individuals may
be compared. Natural landmark individuals are extremal in one sense or another. For
example, the individuals that maximise or minimise any single objective provide natural
reference points (Walker et al., 2013). Singh et al. (2011) have given a procedure for
finding the corners in multi-objective optimisation problems which may be thought of
as the locations where more than one objective is extremised. In this paper we extend
these ideas by examining what is meant by the edge of a mutually non-dominating set.

Although we concentrate on the visualisation aspects of edge points, they are also
of interest for the design of multi-objective evolutionary algorithms, where it is useful to
preferentially retain edge points in a search population, because these points preserve
the spread of the search and are inherently diverse (e.g., Knowles and Corne, 2000;
Zitzler et al., 2002; Smith et al., 2008).

With two objectives the idea of edges is intuitively straightforward: as illustrated
in Figure 1, the two individuals lying at the ends of the set comprise the edges and all
the other individuals lie in the interior. We assume throughout that the criteria are to be
minimised. Likewise, with three objectives the observer of a scatter plot of a mutually
non-dominating set such as that shown in Figure 2 can readily identify which points
are close to the edges of the set and which points are in the interior. Nonetheless, as we
discuss later, defining precisely which individuals comprise the edges in this case is not
entirely straightforward. Identifying these edges is important for understanding the
extent of the set, although it is generally unlikely that a decision maker, in choosing one
particular solution from the set, will pick one of the edge individuals, rather preferring
another solution that makes a trade-off between all the objectives. With more than three
objectives the edge points cannot be directly identified visually and it is not a priori
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Figure 2: Three objective concave and convex mutually non-dominating sets showing
extremal individuals. Individuals minimising and maximising objectives are marked
with � and � respectively. The convex set comprises 1000 points, y, uniformly sampled
from the positive octant a shell of unit radius. The concave set is generated from the
positive set by y �→ −y + (1, 1, 1)T .

clear that visualisation methods that map the set to the plane also map the edges in the
original high-dimensional objective space to the edges of the planar visualisation.

In the body of this paper we examine three definitions of the edges of a mutually
non-dominating set, all of which generalise the basic two-objective notion. Briefly, the
first of these defines edge points as those that extend the range of the attainment surface.
This turns out to identify the same edge individuals as a generalisation of the “corner
points” defined by Singh et al. (2011) and is closely related to the efficiency of individuals
after projection onto subsets of the objectives and preference ordering (Das and Dennis,
1998; di Pierro et al., 2007). The third definition generalises these ideas to consider points
that are non-dominated under maximisation rather than minimisation, which leads to
consideration of the attainment surface under maximisation. This third definition most
closely corresponds to most people’s intuitive idea of where the edge points lie. In
the Appendix, we give an alternative definition from another perspective in which
the mutually non-dominating set is projected onto an alternative lower-dimensional
subspace before edges are located. Some of the material here was presented in Everson
et al. (2013), and in this paper we formalise the definitions and theorems, provide
additional demonstrations of the methods using synthetic data specifically designed to
highlight features of many-objective non-dominated sets using edges, and investigate
the utility of cone-based dominance indicators for identifying edges.

We are particularly concerned with the performance of these definitions for many-
objective sets. With many criteria and relatively small sets, almost all points become edge
points. In addition to synthetic two- and three-dimensional datasets, which are useful
because the edge points are easily visualised, we therefore examine these methods
on two 9-objective datasets. One is for a problem proposed as a prototypical many-
objective problem by Hughes (2007a, 2007b), while the other is a synthetic dataset
created from common geometrical features found in non-dominated sets. We show that
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Figure 3: A mutually non-dominating set of points Y = {yi} and the region that it
dominates, U . The attainment surface S is shown with the thick black line. Points in
the region B dominate the reference point b, whose mth coordinate is bm = maxy′∈Y y ′

m.
Candidate points for sole domination by y1 (u1

1 and u2
1) and y2 (u1

2 and u2
2) are denoted

by white circles; see Equation (6). In fact, u2
1 is only dominated by y1, so y1 is an edge

point. None of the candidates for sole domination of y2 are dominated exclusively by
y2; hence y2 is not an edge point.

edge points that are close to being efficient in the preference ordering sense tend to
lie close to the edges of low-dimensional visualisations of the set and we examine the
use of the controlling dominance area of solutions (CDAS; Sato et al., 2007a) method
for identifying strong edges in many criterion sets, which further extends the work
presented in Everson et al. (2013).

To be definite, we assume that the set of mutually non-dominating individuals
Y = {yn}Nn=1 comprises N individuals yn, each of which is an M-dimensional vector of
objective values; ynm denotes the value of the mth objective for the nth point. Without
loss of generality, we assume that minimising the objective values corresponds to good
performance.

2 Attainment Surface Edges

The idea underlying this characterisation of the edge points of Y is that they extend
the attainment surface (Zitzler, 1999); that is, they dominate (unbounded) regions that
are not dominated by other elements of Y . This is illustrated for a two-dimensional set
in Figure 3, in which the region {(u1, u2)|y11 < u1 ≤ y21 and y12 < u2} is dominated only
by y1. This region is unbounded, but note that there are regions close to the attainment
surface which are also dominated by a single element of Y , but are bounded. For
example, only y3 dominates the rectangle {(u1, u2)|y31 < u1 < y41 and y32 < u2 < y22}.
Our definition of an edge point of Y is thus a point which extends the region dominated
by the attainment surface by appending an unbounded region.

To make this precise, define the region dominated by Y :

U = {u|y ≺ u for some y ∈ Y}. (1)
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The attainment surface is the boundary of U : S = ∂U (Smith et al., 2008). Also, let b be
the point which has the maximum coordinate of any element of Y in each dimension:

bm = max
yn∈Y

ynm. (2)

Then let B be the region which is dominated by Y but lies “below” b:

B = U ∩ {y|y ≺ b}. (3)

Finally, we define a function which returns the set of the elements of Y that (weakly)
dominate a point y:

domsY (y) = {u ∈ Y|u 
 y}. (4)

Given these preliminaries, we say that y ∈ Y is an attainment surface edge point if there
are points outside B (i.e., sufficiently far away from Y) that are dominated by y alone.

DEFINITION 1 (ATTAINMENT SURFACE EDGE POINT): A point y ∈ Y , a mutually non-dominating
set, is an attainment surface edge point of Y if and only if there exists a u ∈ U \ B such that
domsY (u) = {y}.

In order to determine whether an element y ∈ Y is the sole dominator of some point
u ∈ U \ B we observe (see Figure 3) that points which might be dominated by a single
yn lie “directly above” or “directly to the side” of yn. With this in mind, candidates
for sole domination can be constructed by extending each yn parallel to each objective
axis in turn into U \ B and testing how many elements of Y dominate it. We choose a
particular hyper-rectangle to project onto, defined in terms of a point b+ ∈ U \ B, whose
coordinates are:

b+
m = bm + ε, ε > 0, m = 1, . . . , M. (5)

So long as it is positive, the value of ε is immaterial. If the dimension of y is M, then,
as illustrated in Figure 3, M candidate points um

n , m = 1, . . . ,M corresponding to yn are
constructed with coordinates:

um
ni =

⎧⎨
⎩

yni i �= m

i = 1, . . . ,M.

b+
m i = m

(6)

By construction yn ≺ um
n for all m, but if each of the um

n is dominated by at least one other
element of Y (besides yn) then yn is not an edge point. In Figure 3, u1

2 is dominated by
y3, y4, and y5, and u2

2 is dominated by y1. However, u2
1 is dominated only by y1, which

is therefore an edge point.
Figure 4 presents three examples of edge identification using the attainment surface.

Figure 4(a) shows the edge points identified in the concave set shown in Figure 2. Here
the method has identified points that agree reasonably with intuition. However, on the
convex set, Figure 4(b) shows that the method fails to identify many of the points that
might be expected to lie in the edge set. The reason for this lies with points such as
the two edge points labelled α and β. In terms of the first two objective coordinates y1
and y2, α and β are near-optimal. It is therefore unlikely that another element of the
set will dominate regions with respect to these coordinates that are not also dominated
by α and β. Consequently, few of the individuals in the convex population are on the
edge; the relatively few individuals that are identified as edge points either have y1 or
y2 coordinates smaller than those of α or β, or have close to optimal y3 coordinates.
In a similar manner, points lying close to the y1 and y3 axes determine the extent
of the attainment surface in those directions. Figure 4(c) shows the edge points of
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Figure 4: Edge points (circles) identified by the attainment surface method for (a) con-
cave, (b) convex, and (c) hourglass sets.

an hourglass set, which was constructed from the union of samples of appropriately
translated concave and convex sets and thus incorporates concave and convex regions.
Here too, the edge points of the concave region have been well identified, but points
that are intuitively close to the edge of the convex region do not correspond to this
definition.

Direct application of this definition to high dimensional sets is not successful be-
cause almost all elements of the set are identified as edge points. We find that all but
two of the 11,000 individuals in a mutually non-dominating 9-dimensional criterion
set (Hughes, 2007a, 2007b) are edge points, with similar outcomes for synthetic sets
in many dimensions. This is to be expected, as it is a side effect of the inability of the
dominance relation to discriminate between individuals in high-dimensional spaces
(Farina and Amato, 2003).

3 From Corners to Edges

We recall the definition of corner points given by Singh et al. (2011). At first glance,
these appear to be good candidates for extremal points lying on the edge of a mutually
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non-dominating set. They consider the minimisation of M functions fi(x) where x is a
vector of decision variables. If, when minimising a subset of k < M objectives, there ex-
ists a single minimising point, then that point is a corner point. Clearly, in non-degenerate
cases, there are at least M corner points, each corresponding to the minimisation of a
single objective, but there are 2M − 1 possible combinations to be tested.

The definition of corner points might be adapted to a (finite) set of mutually non-
dominating points as follows. Let κ denote a set of indices and let yκ

n be the projection of
yn onto the indices indicated by κ . If |κ| = k, then yκ

n is a k-dimensional vector. Also, let
the function nondom(A) be the function that returns the maximal set of non-dominated
members of the set A:

nondom(A) = {u ∈ A|�(v ∈ A ∧ v ≺ u)}. (7)

Then yi is a corner of order k iff nondom({yκ
j |yj ∈ Y}) = yκ

i ; that is, order k corners are
the points that dominate all others in at least one of the

(
M

k

)
subsets of k objectives.

Clearly, the extremal points in two-criterion sets (e.g., Figures 1 and 3) are also
corners. However, with more objectives and a finite set, corners defined like this do not
correspond to our intuitive notion of where the corners lie. In fact, for the 3-criterion sets
shown in Figure 2, the corners of order 1 are the points that minimise single objectives
(marked with �) and there are no order 2 corners. Note that in the concave case the
so-called corners do not lie near to where most people would place the corners.

The reason that there are no order 2 corners is because on projecting onto a pair
of criteria there are many non-dominated points; that is |nondom({yκ

j |yj ∈ Y})| > 1. We
therefore arrive at a second definition of edge points.

DEFINITION 2 (EDGE POINTS OF ORDER k): A point y ∈ Y is an edge point of order k iff its
projection onto k coordinates is not dominated by the projection of any other y′ ∈ Y onto those
coordinates.

In fact, as the following theorem shows, these edge points found by projection turn
out to be precisely the same points as the attainment surface edge points defined in
section 2 and are therefore those illustrated in Figure 4.

THEOREM 1: An attainment surface edge point is equivalent to an edge point order k for some k.

PROOF: To see that the non-dominated points following projection onto criterion subsets
are the same points as those that extend the range of the attainment surface, suppose that
y is non-dominated when projected onto the criteria κ ; that is, yκ ∈ nondom({yκ

j |yj ∈
Y}). Consequently for criteria m ∈ κ , ym ≤ y ′

m for all y′ ∈ Y . Then let u ∈ U \ B be defined
as

um =
⎧⎨
⎩

ym m ∈ κ

m = 1, . . . , M.

b+
m m �∈ κ

(8)

By construction y ≺ u. On the other hand, if y′ is dominated when projected onto
criteria κ , then there exists an m ∈ κ and y′′ ∈ Y such that y ′′

m < y ′
m. Therefore, if there is

a u ∈ U \ B such that y′ ≺ u, then y′′ ≺ u, so that y′ is not the sole dominator of u. Thus,
we have shown that if y is non-dominated when projected onto indices κ , then it is the
sole dominator of a point U \ B and is therefore an attainment surface edge point.

Conversely, suppose that y is an attainment surface edge point. Then there exists
a u ∈ U \ B such that y ≺ u, but no other y′ ∈ Y dominates u. Let κ be the indices for
which

yk ≤ uk < y ′
k. (9)

Evolutionary Computation Volume 22, Number 3 485



R. M. Everson, D. J. Walker, and J. E. Fieldsend

Clearly κ is not empty because y ≺ u and y′ ⊀ u for all y′ ∈ Y (y′ �= y). Then Equation (9)
shows that when projecting onto the criteria κ , we have yκ ≺ (y′)κ for all y′ ∈ Y , which
establishes that attainment surface edge points are non-dominated when projected onto
some criterion subset. �

We remark that it is computationally faster to find edge points by projection onto
criterion subsets than using the method described in section 2.

We anticipate that the equivalence we have shown between points that extend
the attainment surface and points that are non-dominated when projected onto some
subset of the criteria will be of use in evolutionary multi-objective algorithms (such as
Deb et al., 2000; Knowles and Corne, 2000; Zitzler et al., 2002; Smith et al., 2008) which
seek to preserve diversity and the spread of the estimated Pareto front by preferentially
retaining and perturbing solutions on the periphery of the solution set.

4 Criterion Subset Edges

In section 3 we identified edges as the non-dominated points after projection onto k of
the M criteria. As we showed there, these points are the points that extend the range of
the attainment surface. However, reference to Figure 2 for example shows that points
that maximise one of the criteria also lie on the intuitive edges of concave and convex
fronts. Here we therefore extend the criterion for a point to be an edge point by including
points that, after projection onto k of the criteria, are not dominated if the criteria were
to be maximised rather than minimised. A final definition of edge points is thus as
follows.

DEFINITION 3 (EDGE POINTS OF ORDER k): Let yκ be the projection of y ∈ Y onto k = |κ|
coordinates. Then y is an order k edge point of Y iff yκ is not dominated under minimisation or
not dominated under maximisation by any member {yk

n|yn ∈ Y}.
Let the function nondom(Y) be the function which returns the maximal set of non-

dominated members of Y under maximisation:

nondom(Y) = {y ∈ Y|�(v ∈ Y ∧ v 
 y)}. (10)

The set of edge points of order k = |κ| for Y is therefore

{yn|yκ
n ∈ nondom({yκ

n|yn ∈ Y})}
⋃

{yn|yκ
n ∈ nondom({yκ

n|yn ∈ Y})}. (11)

As an illustration, Figure 5 shows the projection of the hourglass data onto criteria
y2 and y3. Points that are non-dominated under minimisation and maximisation are
marked with � and � symbols, respectively. It can be seen that these correspond to
different regions of extremal points. The right-hand panel of Figure 5 shows all the edge
points identified after projections onto all the criterion subsets. As the figure illustrates,
this definition of edge points has identified a uniform spread of points corresponding
to what we intuitively identify as edges across both concave and convex portions of the
front.

The attainment surface ofY under maximisation, S̄, may be defined as the boundary
of the region dominated under maximisation by the elements of Y . Figure 6 illustrates
the attainment surfaces under minimisation and maximisation for a set of mutually non-
dominating points in the plane. Whereas the attainment surface under minimisation is a
conservative interpolation of the set (Smith et al., 2008) in the sense that every point in S
is weakly dominated by an element ofY , the attainment surface under maximisation can
be seen to be an optimistic interpolation of Y . Using the same arguments as presented in

486 Evolutionary Computation Volume 22, Number 3



Edges of Mutually Non-dominating Sets

Figure 5: Edge points by projection. Left: The 3D hourglass data projected onto criteria
y2 and y3. Right: Edge points of the hourglass data identified as non-dominated under
minimisation or maximisation after projection onto criterion subsets. In both panels,
points that are non-dominated under minimisation and maximisation are marked with
� and � symbols, respectively.

Figure 6: Attainment surfaces of a mutually non-dominating set of pointsY = {yi} under
minimisation and maximisation.

section 3, the edge points identified as non-dominated under maximisation are exactly
those that extend the range of the attainment surface under maximisation. We note that
for two criteria, the extremal points are edge points because they extend both S and S̄ ,
but of course, this is not the case with more than two criteria.
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Figure 7: Quantifying edginess. The 3D hourglass data with shaded points according
to how close a point is to being an edge point. Left: Identified edge points are removed
from the set to leave a reduced set of mutually non-dominating points from which
“second degree” edges can be identified. This procedure is repeated iteratively until no
points remain. Points are shaded according to the iteration at which they are identified
as edges. Right: As described in Section 6, points are ordered by the largest s parameter
in the CDAS mapping for which they are CDAS edge points.

5 Using Edges as Landmarks in Visualisation

Having defined edges, we now examine their use in the visualisation of many objective
mutually non-dominating sets such as those resulting from many objective optimisa-
tions.

In addition to knowing which are the edge points, it may also be useful to know
which are the interior points in the sense that interior points are far from being on the
edges. A straightforward procedure for assigning a degree of “edginess” to points is the
following deflationary procedure. First, identify the edge points of the set E1 = edge(Y),
where edge(·) is the function that returns the set of edge points of its argument. The edge
points are then removed from Y and second degree edges are found: E2 = edge(Y \ E1).
This procedure is repeated until all the points have been removed. Figure 7 shows the
result of this procedure applied to the 3D hourglass dataset. It is clear that points near to
the intuitive centre of the set have been located. It is likely that these will be of interest
to decision makers because, given the choices available in the set, their central position
means that they do not favour any particular criterion. We note that this procedure
assigns to each point an integer degree of edginess from a usually small number of
degrees. Thus, many points have the same degree of edginess, so this procedure does
not provide a total ordering of the points. We provide an alternative measure of the
degree of edginess in Section 6.

Hughes (2007a, 2007b) proposed as a prototypical many-objective problem the de-
sign of a pulsed doppler radar to simultaneously measure the velocity and distance
of a target. He applied the MSOPS algorithm (Hughes, 2005) to the optimisation an
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appropriate set of waveforms that will maximise the detection performance and min-
imise the duration of the transmission. The problem has nine objectives: objectives 1,
3, 5, and 7 are concerned with the range at which the object may be detected, while
objectives 2, 4, 6, and 8 relate to its velocity; objective 9 is the total transmission time
of the waveform that is being optimised. The data we use is arranged so that all the
objectives are to be minimised.

To visualise the edges of the radar dataset, we first project it into two dimensions.
Rather than use the objective values directly, we seek to capture the order relations
between the elements of the set. This is done by defining a dominance distance between
elements that quantifies the extent to which two elements are on average greater than,
less than, or equal to other elements in the set. More specifically, we define a similarity
between two elements ym and yn relative to the element yp as follows:

S(ym, yn; yp) =
M∑

j=1

γj

[
I ((ypj < ymj ) ∧ (ypj < ynj ))

+ I ((ypj = ymj ) ∧ (ypj = ynj ))

+ I ((ypj > ymj ) ∧ (ypj > ynj ))
]

(12)

where I (p) is 1 if p is true and 0 otherwise. Thus the dominance similarity is the weighted
number of objectives on which ym and yn are both less than, greater than, or equal to yp.
The weights γj (γj ≥ 0 and

∑M
j γj = 1) reflect the importance assigned to each objective;

here we set them all equal: γj = 1/M . The dominance distance between ym and yn is
then defined by averaging over all the other elements in the set:

D(ym, yn) = 1 − 1
N − 2

∑
p/∈{m,n}

S(ym, yn; yp). (13)

The dominance distance is formally a metric (Walker et al., 2013) and can be effi-
ciently calculated from

D(ym, yn) =
K∑

j=1

γj

(|rmj − rnj | − 1
)

(14)

where rmj is the rank of ym on criterion j. With this measure of the distance between
elements of the set, metric multi-dimensional scaling (MDS; Sammon, 1969; Webb, 2002)
is then used to find an embedding in Euclidean space that preserves the dominance
distances. Figure 8 shows the dominance distance MDS visualisation of 200 solutions
of the radar data, in which solutions are coloured by their average rank. Also shown
are the solutions which minimise or maximise a single objective, which are the order 1
edges. As the figure shows, the visualisation provides a topographic low-dimensional
representation of the data and the order 1 edges tend to lie around the periphery of the
points plotted in the plane. Additional details and visualisations are given by Walker
et al. (2013).

The relative sparsity of points in many dimensions and the decreasing discrim-
inatory power of the dominance relation with increasing dimension means that with
many objectives most points in a many-objective mutually non-dominating set are edge
points. Figure 9 shows the variation with k of the fraction of 2,000 radar data points that
are identified as edges according to maximisation or minimisation. Clearly, the fraction
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Figure 8: Dominance distance MDS visualisations of 200 samples from the radar data.
The greyscale indicates the average rank of the solution; solutions that maximise or
minimise a single objective are indicated with the number of the objective; if the objective
is maximised the number is indicated with an overbar.

Figure 9: The fraction of order k = |κ| edge points in 2,000 solutions from the radar
estimated Pareto front and from a nine-criterion hourglass mutually non-dominating
set. Plots show the number of edge points arising from non-dominance under minimi-
sation, under maximisation, together with the total number of edge points (the union
of the minimisation and maximisation sets) and the number that are non-dominated
under both minimisation and maximisation (the intersection of the minimisation and
maximisation sets).

of edge points grows rapidly with the number of criteria. The figure also shows the frac-
tion of order k edge points for 2,000 points uniformly distributed on a 9-dimensional
hourglass dataset. We note that here the fraction of edge points identified by minimi-
sation and maximisation is very similar and arises because of the symmetrical concave
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and convex regions of the hourglass data. For the radar data, in contrast, the number
of edge points corresponding to minimisation considerably exceeds the number arising
from maximisation. By comparison with Figure 4 and calculations for entirely convex
and concave fronts, we therefore infer that the radar data is on the whole more concave
(like Figure 4(a)) than convex (like Figure 4(b)), although it may have separate concave
and convex regions.

For any k, a point may be an edge point in
(
M

k

)
ways considering minimisation and

the same number considering maximisation. The k-preference ordering also considers
the projection of a mutually non-dominating set onto combinations of the coordinate
axes (Das and Dennis, 1998; di Pierro et al., 2007). A point is said to be efficient of order
k if it is not dominated (under minimisation) in projections onto any of the

(
M

k

)
criterion

subsets. We therefore consider the fraction of the
(
M

k

)
projections for which a point is non-

dominated. Clearly, as this fraction approaches 1, the edge point becomes k-efficient.
Figure 10 shows the dominance distance embedding of the radar data divided into cells,
each of which is shaded according to the median (over points in the cell) of this fraction.
We show visualisations for k = 3, 5, and 7, but results for other k are similar. As shown,
edge points from both minimisation and maximisation tend to occur more frequently
close to the edges of the dominance distance MDS projection. The projection and this
definition of edge points therefore concur about where the boundaries of the set lie.

We note that efficient edge points for all k arising from maximisation tend to oc-
cur close to the horns of the crescent, which is where points maximising individual
criteria are mostly located, as shown in Figure 8. Likewise, points arising from minimi-
sation tend to be located near to the top of the visualisation, where points minimising
individual criteria are mostly located.

For comparison, Figure 11 shows the dominance distance MDS embedding of nine-
dimensional hourglass data, again shaded according to the median fractional efficiency
of edge points for k = 6; similar pictures are obtained with other k. The MDS embedding
of the hourglass data comprises two orthogonal 2D-plates, corresponding to the concave
and convex regions of the data, and thus requires three dimensions for visualisation.
Figure 11 therefore shows the projections onto the three most significant axes. Here it
is evident that although with nine-dimensional data almost all points are edge points,
those obtained by non-domination under maximisation lie principally on one plate (the
convex plate), while edge points identified by minimisation lie on the other plate (cf.
Figure 5). Returning to the radar data, we infer that set is approximately convex in the
vicinity of the crescent’s horns, but more concave close to the other boundary.

An additional interesting feature revealed by this visualisation of the edge points
is the region of higher edge point density crossing the embedding from top to bottom
toward the right-hand third of the embedding. This is particularly evident in the left-
hand panel of Figure 12, which shows the median efficiency of k = 6 edge points from
either maximisation or minimisation; other k yield similar pictures. The criteria on
which the radar data is optimised divide into three groups. One group (f1, f3, f5, and
f7) relates to the range at which a radar can discern targets. The second group (f2, f4,
f6, and f8) relates to the speed at which moving targets can be detected, while the final
group (f9) comprises a single objective, the transmission time of the radar waveform.
Individual solutions tend to optimise one of these groups of criteria at the expense of
the others (Walker et al., 2013). Plotting the solutions with symbols showing which of
these groups is best optimised, Figure 12 shows that the high edge point density region
corresponds to the transition between solutions that best optimise the range objectives
and those that best optimise the velocity objectives.
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Figure 10: Cellular visualisations of the radar population embedded into two dimen-
sions with dominance distance MDS. The greyscale indicates the the median fractional
efficiency with which edge points in the cell are edge points in a k-criterion subset.
Panels in the left- and right-hand columns arise from minimisation and maximisation,
respectively.

6 Controlling Dominance Area of Solutions

As we have seen, as the number of objectives increases most elements of a mutually non-
dominating set are edge points. In addition to the sparsity of points in high-dimensional
spaces, the dominance relation becomes less discriminatory as the number of criteria
increases. A number of methods have been proposed that attempt to strengthen the
dominance relation in many dimensions, or otherwise provide additional resolution to
the ordering generated from Pareto dominance (Bentley and Wakefield, 1997; Drechsler
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Figure 11: Median fractional efficiency of edges points of order 6 in a dominance distance
MDS embedding of the nine-dimensional hourglass data. Edges arising from minimi-
sation and maximisation are shown on the left- and right-hand columns, respectively.
Projections onto MDS axes 1 and 2, and axes 1 and 3, are shown in the two rows.

et al., 2001; Laumanns et al., 2002; di Pierro et al., 2007; Sato et al., 2007a; Emmerich et al.,
2013). Here we examine the use of the controlling dominance area of solutions (CDAS;
Sato et al., 2007a) approach, which has been successfully used in some recent many-
objective optimisers (Sato et al., 2007b, 2010; de Carvalho and Pozo, 2011; Woolard and
Fieldsend, 2013).

The region dominated by a point is bounded by planes that intersect the coordinate
axes at right angles. In the CDAS scheme, a point dominates the region bounded by
planes that make an angle φ with the coordinate axes. When φ < π/2, the dominance
relation is strengthened in the sense that a point dominates a larger volume than when
φ = π/2; conversely, when φ > π/2, a point dominates a smaller volume, effectively
weakening the dominance relation. A particularly attractive feature of the CDAS dom-
inance is that it may be implemented by nonlinearly mapping points to a new space
and then using the usual dominance relation. The mapping z = g(y) is defined by:

gm(y; s) = ||y||sin(ω + smπ )
sin(smπ )

m = 1, . . . , M (15)

where ω = arccos(ym/||y||) and s is a vector of parameters defining the angles that the
planes forming the dominating plane make with the coordinate axes, φm = πsm. Here,
in common with other work, we use the same sm for all coordinates: sm = s for all m.
When s = 1/2, conventional dominance is obtained. The weakest dominance relation
is obtained when s = 0.75, which corresponds in the mapped space to all the elements
of the set being mapped to a simplex; while when s = 0.25, the points are mapped to a
ray passing through the origin and the points are totally ordered.

To define CDAS edge points, we first select a k-dimensional subset of objectives yκ ,
which are then mapped using the CDAS transformation, and then locate the edges of
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Figure 12: Top left: Median fractional efficiency of edge points of order 6 in a dominance
distance MDS embedding of the radar data. Remaining figures: Dominance distance
embedding of the radar data solutions with symbols indicating the type of objective
for which the solution is most highly ranked. Solutions marked with a circle belong to
the indicated group of objective (range, velocity or duration). The transition between
solutions that best optimise range criteria and those that best optimise velocity criteria
or transmission time lies in the same region as the high density of efficient edge points
shown in the top left panel.

the mapped set Z = {g(yκ )|y ∈ Y} using conventional dominance in the mapped space.
A point y ∈ Y is thus defined as a CDAS edge point if the image under g of a subset of
its coordinates is an edge point of Z .

Figure 13 shows CDAS edge points for the 3D hourglass dataset for s = 0.35, s =
0.5 (conventional dominance), and s = 0.7. When s = 0.7, the dominance relation is
weakened and there is consequently a thicker band of edge points extending inward
from the intuitive edges of the set. In the limit s → 0.75, all points are edge points.
On the other hand, when s < 0.5, the stronger dominance relation implies that fewer
points define the attainment surface of Z (that is, are non-dominated on projection onto
criterion subsets1) so that a sparser set of stronger edge points is identified. In the limit
s → 0.25, the number of minimising or maximising edge points is each equal to M, the
number of criteria. However, these CDAS edge points do not necessarily coincide with
the order 1 edge points using conventional dominance.

1Viewed in the original space, the projection is no longer an orthogonal projection along particular
coordinates.
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Figure 14: CDAS edge points of the radar dataset using the CDAS transformation with
parameter s = 0.26 for orders k = 3, 7. Median fractional efficiency of edges in cells
arising from minimisation and maximisation are shown on the left- and right-hand
columns, respectively.

In Section 5 we described a method of assigning a degree of edginess to points by
successively removing edge points from a set. An alternative measure of the degree of
edginess can be obtained as the maximum s for which a point is an edge point. (It is
not hard to see that if a point is a CDAS edge point for some s, then it is also an edge
point for all s ′ > s.) Unlike the deflationary method, this measure assigns the degree
of edginess on a continuous scale and thus generally totally orders the points—and
has previously been used to rank solutions in a many-objective optimiser (Woolard
and Fieldsend, 2013). In addition, it can be used for high dimensional sets for which
the deflationary method fails because all points are edge points. Figure 7 shows that
applying this measure to a 3D hourglass dataset identifies the interior regions of the
set.

Figure 14 shows the median fractional efficiency of edge points for the radar data,
using s = 0.26. This illustrates how using a small s effectively reduces the number of
edge points in high dimensions. In the nine-dimensional hourglass data, as here, we find
that the strongest edge points are generally close to the periphery of the visualisation.

7 Conclusion

We have explored a number of ways of extending the simple idea of the extreme
elements of a mutually non-dominating set to more than two criteria. Our definitions
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of edge points are closely related to the attainment surface, which plays a fundamental
role in understanding which points lie close to the edges of a mutually non-dominating
set. We have shown that the definition of edge points as those points that extend the
range of the attainment surface yields precisely the points that are non-dominated in a
projection onto a subset of the criteria.

These definitions of edge points are closely related to preference ordering, in which a
many-objective point is considered efficient if it remains non-dominated when projected
onto all possible combinations of k criterion subsets. A measure, therefore, of the strength
of edge points is the fraction of the possible combinations in which they remain non-
dominated, and we note that di Pierro et al. (2007) employed this idea for many-objective
optimisation.

Although somewhat counterintuitive, we have shown that points that remain non-
dominated under maximisation after projection onto criterion subsets are also important,
because they too are on the edges of the set. They play a particularly important role in
convex-shaped sets and we anticipate that using edge points from maximisation will
be important in maintaining diversity in many-objective optimisation algorithms.

As the number of criteria increases and almost all points are edge points and thus
extend the range of the attainment surface, we emphasise that regions with a high
frequency of edge points and edge points that are non-dominated in many projections
correspond to the boundaries of low-dimensional visualisations, and furthermore reveal
previously unknown structure in a many-objective optimisation problem.

The edge points of a set retain a useful meaning using the modified CDAS domi-
nance relation. This provides another method of identifying strong edge points and of
locating points that lie in the interior of the set.

Software implementing these ideas and an IPython notebook (Pérez and Granger,
2007) showing the generation of colour versions of the figures is available at https://
github.com/richardeverson/life-on-the-edge.
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Tušar, T., and Filipič, B. (2011). Visualizing 4D approximation sets of multiobjective optimizers
with prosections. In Proceedings of the Genetic and Evolutionary Computation Conference, GECCO
2011, pp. 737–744.

Walker, D., Everson, R., and Fieldsend, J. (2013). Visualising mutually non-dominating solu-
tion sets in many-objective optimisation. IEEE Transactions on Evolutionary Computation,
17(2):165–184.

Webb, A. R. (2002). Statistical pattern recognition, 2nd ed. New York: Wiley.

Woolard, M. M., and Fieldsend, J. E. (2013). On the effect of selection and archiving operators
in many-objective particle swarm optimisation. In Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO 2013, pp. 129–136.

Yoshikawa, T., Yamashiro, D., and Furuhashi, T. (2007). A proposal of visualization of multi-
objective Pareto solutions—Development of mining technique for solutions. In Proceedings
of the 2007 IEEE Symposium on Computational Intelligence in Multicriteria Decision Making
(MCDM 2007), pp. 172–177.

Zitzler, E. (1999). Evolutionary algorithms for multiobjective optimization: Methods and appli-
cations. Ph.D. thesis, ETH Zurich.

Zitzler, E., Laumanns, M., and Thiele, L. (2002). SPEA2: Improving the strength Pareto evolution-
ary algorithm for multiobjective optimization. In Proceedings of the Evolutionary Methods for
Design, Optimisation and Control with Application to Industrial Problems Conference, (EUROGEN
2001), pp. 95–100.

Appendix A Dominance-based Edges from Rotations

Here we present an alternative method for identifying the edges of mutually non-
dominating sets. The motivation for this method comes from the fact that, as illustrated
in Figure 15(a), the non-dominated elements of a set define a portion of the set’s bound-
ary. The edges of the set might therefore be identified as the union of the non-dominated
points as the set is rotated.

In general, the points of a multi-criterion non-dominated set are not coplanar, so
in order to use this idea with many-criterion non-dominated sets, we first project the
points in Y onto a plane in which they remain mutually non-dominating.

Without loss of generality, we assume that the elements of Y are non-negative
(ynm ≥ 0 for all n,m). Then the simplex defined by the numbers {λm : λm > 0}Mm=1 is the
portion of the (hyper-) plane which lies in the positive orthant and which intersects
the coordinate axes at distances λm from the origin, as illustrated in Figure 15(b). The
simplex is therefore the segment of the plane in the positive orthant defined by

n · y = d ym ≥ 0, m = 1, . . . , M (16)

where the elements of the unit vector n normal to the simplex are nm = d/λm and the
perpendicular distance to the origin d can be found as

d-2 =
M∑

m=1

λ-2
m . (17)

Points are then projected onto the simplex by:

ŷn = yn/(yn · n), (18)
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Figure 15: (a) Non-dominated points identify the boundary of a set. Non-dominated
regions of the set in the plane are marked in black. (b) Projection of a point y onto the
simplex defined by {λ1, λ2, λ3}; y is projected to ŷ.

and we emphasise that the projection of Y results in a set of mutually non-dominating
points. The choice of the λm clearly affects the particular projection, but since the dom-
inance relations between the points are unaffected, the method is not sensitive to the
precise values. We have used λm = mediany∈Yym here.

To identify the edges of this set, we now rotate the ŷn in the plane of the simplex
and identify the non-dominated points in each rotation.

Coordinates for the ŷn on the simplex may be simply found by projecting the ŷn

onto their principal components or equivalently by singular value decomposition. Let
Ŷ = [ŷ1 − μ, . . . , ŷN − μ] be the matrix whose columns are the mean-centred ŷn and let
Ŷ = U�VT be the singular value decomposition of Ŷ. Then the first M − 1 columns of
the orthonormal matrix U span the subspace of the simplex (the last column is a vector
normal to the simplex). Coordinates of yn mapped to the simplex are thus

ỹn = UT
M-1(ŷn − μ) (19)

where UM-1 denotes the matrix of the first M − 1 columns of U.
Rather than exhaustively quartering all rotations, we generate rotations Q at ran-

dom. Uniformly distributed random rotations are generated by, for example, a QR
decomposition of (M − 1) × (M − 1) dimensional matrices whose elements are Gaus-
sian distributed. The signs of the columns of Q are arbitrary, so in all 2M-1 rotations can
be cheaply generated from a single QR decomposition by appropriately flipping the
signs of the columns of Q.

As each rotation is generated the non-dominated points nondom({Qỹn|yn ∈ Y}) are
found and the corresponding y added to the identified edge points.

This method of determining edges is demonstrated for the hourglass set in Figure 16.
It is clear that a reasonable set of points has been identified as edge points, both on the
upper, concave portion and on the lower, convex section. However, the relationship
of these edge points to those found with the attainment surface or by projection onto
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Figure 16: Edge points of the hourglass set identified from non-dominated points after
projection onto the simplex and 64 random rotations and associated flips.

subsets of the criteria is not clear. We note also that if Y , when projected onto the
simplex, has “deep and narrow” concavities, then this method will be unable to locate
edge points in the concavities.

We also applied this method to the task of identifying the edge of the nine-criterion
radar data. However, like the other methods, it too identifies all points as being on the
edge. Again, this is due to the relative lack of discrimination provided by the dominance
relation in high dimensional spaces.
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