research

Visualising Mutually Non-dominating Solution Sets in Many-objective Optimisation

Abstract

Copyright © 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.As many-objective optimization algorithms mature, the problem owner is faced with visualizing and understanding a set of mutually nondominating solutions in a high dimensional space. We review existing methods and present new techniques to address this problem. We address a common problem with the well-known heatmap visualization, since the often arbitrary ordering of rows and columns renders the heatmap unclear, by using spectral seriation to rearrange the solutions and objectives and thus enhance the clarity of the heatmap. A multiobjective evolutionary optimizer is used to further enhance the simultaneous visualization of solutions in objective and parameter space. Two methods for visualizing multiobjective solutions in the plane are introduced. First, we use RadViz and exploit interpretations of barycentric coordinates for convex polygons and simplices to map a mutually nondominating set to the interior of a regular convex polygon in the plane, providing an intuitive representation of the solutions and objectives. Second, we introduce a new measure of the similarity of solutions—the dominance distance—which captures the order relations between solutions. This metric provides an embedding in Euclidean space, which is shown to yield coherent visualizations in two dimensions. The methods are illustrated on standard test problems and data from a benchmark many-objective problem

    Similar works