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Abstract—As many-objective optimisation algorithms mature
the problem owner is faced with visualising and understanding a
set of mutually non-dominating solutions in a high dimensional
space. We review existing methods and present new techniques
to address this problem.

We address a common problem with the well known heatmap
visualisation, that the often arbitrary ordering of rows and
columns renders the heatmap unclear, by using spectral seriation
to rearrange the solutions and objectives and thus enhance the
clarity of the heatmap. A multi-objective evolutionary optimiser
is used to further enhance the simultaneous visualisation of
solutions in objective and parameter space.

Two methods for visualising multi-objective solution objectives
in the plane are introduced. First, we use RadViz and exploit
interpretations of barycentric coordinates for convex polygons
and simplices to map a mutually non-dominating set to the
interior of a regular convex polygon in the plane, providing an
intuitive representation of the solutions and objectives.

Second, we introduce a new measure of the similarity of
solutions—the dominance distance—which captures the order
relations between solutions. This metric provides an embedding in
Euclidean space, which is shown to yield coherent visualisations
in two dimensions.

The methods are illustrated on standard test problems and
data from a benchmark many-objective problem.

I. INTRODUCTION

The recent trend towards investigating many-objective prob-
lems, problems with four or more conflicting objectives, has
brought with it several difficulties [1]. One impediment to
understanding the results of a many-objective optimisation is
visualising the set of solutions produced. In a multi-objective
context, problems consisting of two or three objectives, an
intuitive visualisation is obtained from scatter plots of the
solutions in objective space, allowing the decision maker
to identify the trade-off between objectives. However, the
relationships between even three variables can be difficult to
comprehend when plotted in two dimensions, and it is not
usually possible for the decision maker to comprehend four
or more spatial dimensions visually. The goal of this paper is
to introduce methods that permit a decision maker to explore
the results of an evolutionary algorithm applied to solving a
many-objective optimisation problem to aid the selection of a
solution and illustrate relationships between solutions, as well
as between objectives.
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There are many multivariate data visualisation methods,
some of which have been applied to the visualisation of many-
objective solution sets. Some of these, for example parallel
coordinate plots [2] and heatmaps [3], result in a visualisation
from which all of the original data can be recovered, however
often they can be difficult to interpret because solutions
are overlayed or arbitrarily ordered. Other methods, such as
principal component analysis [4] and Neuroscale [5] compress
the dimensionality of the population into a 2-dimensional
space so that it can be visualised with standard techniques,
such as scatter plots [6]. With these techniques it is not
possible, using the visualisation alone, to recover the original
objective values of the solutions it illustrates, and so poten-
tially useful information has been lost. Section II reviews the
application of these methods, and others, to visualising many-
objective populations. In [7] we suggested novel methods for
ordering a many-objective population in order to facilitate a
more comprehensible visualisation without the need to remove
objectives. Here we introduce new visualisation techniques
for displaying many-objective mutually non-dominating sets
to facilitate understanding about the relationships between
the constituent solutions. We begin by presenting techniques
to enhance the clarity of the popular heatmap method and
show how it can be used to visualise both objective and
parameter space components of solutions without discarding
any objectives.

Despite the loss of potentially important information, di-
mension reduction methods often produce a useful visualisa-
tion and it is especially appealing to visualise solutions in
the plane as paper and computer screens are two-dimensional
and humans are adept at interpreting planar diagrams. General
dimension reduction methods, such as principal component
analysis, Self Organising Maps [8] and Neuroscale, are igno-
rant of the mutually non-dominating nature of solutions lying
on an estimate of the true Pareto front of a many-objective
problem and in general do not preserve the dominance rela-
tions between individual solutions. We therefore examine two
visualisation methods suited to mutually non-dominating data.
In the first we use RadViz [9] to map the objective axes to the
vertices of a planar polygon. We provide a new derivation of
the RadViz projection, exploiting interpretations of barycentric
coordinates for convex polygons and for simplices in many
dimensions, which indicates how it is useful for mutually non-
dominating sets. In the second planar visualisation method we
introduce a new similarity measure—dominance distance—
between solutions, based on their relative dominance. Using
metric multi-dimensional scaling, dominance distance yields
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an embedding of the solution set in Euclidean space which is
linearly projected to a two- or three-dimensional visualisation
space. The RadViz method preserves the identity of the
objectives in the visualisation, while the second may be viewed
as a method that clusters together solutions that have a similar
relation to other solutions in the set.

Throughout this paper we are concerned with visualising
the solutions to the M -objective minimisation problem which
is succinctly stated as

minimise y = (f1(x), . . . , fM (x)), (1)

where the functions fm(x) map the P -dimensional parameter
vectors x to objectives (there may also be constraints). We
assume that the parameters and objectives are real valued so
that x ∈ X ⊆ RP and y ∈ RM . The result of a minimisation
is generally a set of solutions P = {xk}Kk=1 and the cor-
responding objectives F = {yk}Kk=1 which approximate the
Pareto set and Pareto front respectively. Regarded as a set of
M -dimensional coordinate points, the elements of F are not
dominated and thus mutually non-dominating and by extension
the elements of P are also regarded as non-dominated and
mutually non-dominating. We denote by ykm the value of the
k-th solution on objective m.

The techniques we present in this paper are illustrated on
sets of mutually non-dominating solutions for several many-
objective problems. The first is a set of solutions to a 9-
objective problem, optimising the design of a waveform for
a Pulsed Doppler Radar, proposed as a prototypical many-
objective problem [10]. We also use populations of solutions
to test problems, visualising problem instances of DTLZ2 and
DTLZ6 [11], as well as WFG3 and WFG8 from the Walking
Fish Group suite of test problems [12]. These examples are
introduced in detail later in the paper.

The remainder of the paper is structured as follows. Section
II reviews a selection of visualisation methods, although we
do not aim to provide an exhaustive review, concentrating
instead on methods that have been used for the visualisation
of estimated Pareto fronts. Section III introduces seriation for
enhancing heatmaps, applying it to the reordering of solutions
in Section III-A and for reordering objectives in Section III-C;
Section IV demonstrates the joint seriation of two spaces so
that heatmaps of both parameter and objective spaces can be
visualised together. We then present two methods for reducing
the dimensionality of a solution set. In Section V we use
RadViz to map solutions to the interior of a polygon in the
plane and in Section VI we use multi-dimensional scaling in
conjunction with a new dominance-based metric. Conclusions
are drawn in Section VII and future work is discussed.

II. MANY-OBJECTIVE SET VISUALISATION

A variety of methods have been employed to cope with
visualising the increasing number of objectives found in in-
dustrial and scientific optimisation problems. In this section,
we review the principal methods.

For illustration, Fig. 1 presents examples of some of the
existing many-objective visualisation methods. The examples
all show the objective-space mapping of solutions F = {yk}

generated by running a basic population-based multi-objective
evolutionary algorithm (MOEA) for 5,000 generations, main-
taining an elite archive of non-dominated solutions throughout
the process. Specifically, the algorithm was a (µ+λ)–evolution
strategy (ES) in which each of the µ parent solutions produced
a single child solution at each generation; µ = 100 and
λ = 100. The child solutions were mutated with an additive
Gaussian mutation (σ = 0.1, mutation probability 1/P ) and
the archive was used to maintain the current approximation of
the true Pareto front. We used the well-known test problem
DTLZ2 [11], and generated results for M = 2, 3, 5 objective
instances of the problem; the number of parameters was
P = 10+(M−1) as recommended by [11]. With the exception
of Figs. 1(a) and 1(b), all of the examples use 768 solutions
from 5-objective archive. By construction, the Pareto front is
known to be the portion of a spherical shell of radius 1 lying
in the positive orthant. The solutions are quite well converged;
for the 2-objective instance the median distance from the true
Pareto front is 5.48 × 10−4. For the 3-objective archive the
median distance is 3.15×10−3, and for the 5-objective archive
5.38× 10−2.

Probably the most common method for visualising solutions
in a multi-objective context is to produce a scatter plot on 2- or
3-dimensional axes, where each axis represents an objective.
Examples are shown in Fig. 1(a) (two objectives) and 1(b)
(three objectives)1 and clearly show the spherical nature of
the estimated front. Solutions have been coloured according
to the objective m on which the solution is performing “best”
as follows. In order to avoid biases due to the differing scales
on which the objectives are measured, the solutions were
ranked on each objective separately; we denote the rank of
solution yk on the m-th objective by rkm with 1 being the
best rank and K the worst. Then solution yk is coloured
according to the objective for which rkm is minimum. As
Fig. 1(b) shows, this colouring tends to colour neighbouring
solutions in the same colour and gives some indication of the
nature of a region of objective space. Although this provides
relatively little additional information for 2 and 3 objectives,
the same device considerably enhances the interpretability of
many objective visualisations [6].

A. Many-objective Methods

Two of the earliest methods identified for use in many-
objective optimisation were parallel coordinate plots [13],
[14], [2] and pairwise coordinate plots [15]. A parallel coor-
dinate plot presents each solution yk as graph of ykm versus
objective m with the values connected by lines. Whilst this is
easily extended to any number of objectives, as Fig. 1(c) shows
for the 5-objective DTLZ2 solutions, the plots are often too
cluttered to be of use. A pairwise coordinate plot compares
each pair of objectives as a 2-dimensional scatter plot, as
shown in Fig. 1(d). This is useful for revealing correlated and
anti-correlated pairs of objectives and provides information
on the pairwise interactions between objectives. However, the

1In order to enhance the clarity of the visualisation, one solution has been
omitted from Fig. 1(b). This solution was an outlier and scaled the axes so
that the remainder of the solutions were difficult to see.
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(a) 2-objective scatter plot
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(e) Heatmap
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(i) Neuroscale

Fig. 1: Examples of some of the visualisation methods reviewed in Section II. The solutions shown are for a 5-objective DTLZ2 archive
(with the exception of 1(a) and 1(b), which are 2- and 3-objective problem instances, respectively) generated using a basic MOEA. The
solutions represent the non-dominated archive after 5000 function evaluations. Solutions are coloured according to which objective has the
highest rank: 1 = red, 2 = blue, 3 = green, 4 = cyan, 5 = black.

fact that the points representing a particular solution in each
plot are not visually linked together means that it is generally
difficult to perceive relations between solutions. While it is
mechanically easy to extend to any number of objectives, the
number of plots M(M−1)/2 rapidly becomes overwhelming.

Heatmaps are frequently used to visualise large multivariate
datasets (see for example [16]) and have recently been used
for multi-objective populations [3], [17], [18], [19], [20]. In a
heatmap objectives are represented as columns, solutions by
rows, and relative values as ‘heat’ represented by colour. Fig.
1(e) presents a heatmap of the 5-objective DTLZ2 archive. The

arbitrary ordering of solutions means that it can be difficult
to observe relationships between the various solutions and
objectives. Schemes for reordering the rows and columns
of a heatmap to present a clearer view of a multi-objective
population, which we discuss later, have been proposed [3],
[17]. In addition, in order to be of use, the objectives must
be on the same scale. One way in which this is done is by
normalising values to similar ranges; for example, in [17]
linear scaling of the solutions for each objective to [0, 1]
before assigning colours is recommended. In Fig. 1(e) the
objectives are all on roughly the same scale, so no scaling
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was done before assigning colours; nonetheless, the heatmap
is dominated by the cooler colours. We present methods which
use the full range of colours and place similar solutions
together to enhance a visualisation of both objective space
and parameter space in Sections III–IV.

B. Dimension Reduction for Visualisation

Since scatter plots provide such an intuitive visualisation
of multi-objective solutions, an obvious course of action is
to project the solution archive into 2 or 3 dimensions and
draw a scatter plot. We briefly review dimension reduction
methods which have been used for visualisation of many-
objective solutions in this manner.

Probably the most common linear dimension reduction
technique is principal component analysis (PCA, [4]), which
identifies the directions of objective space that capture the
maximum amount of variance in the solutions. Fig. 1(f) shows
the PCA projection of the 5-objective DTLZ2 solutions into
the two-dimensional space spanned by the first two principal
components. The projection has identified the two directions
in objective space which retain the most variance and are
therefore the best linear approximation to the original archive
in a mean squared sense. However, as the colouring shows,
the solutions are overlayed in such a way that it is difficult
to distinguish among them and the coherence of neighbouring
solutions evident in the multi-objective examples (Figs. 1(a)
and 1(b)) is absent here. Of course, some information must be
lost in projecting into a lower dimensional space, but we note
that PCA is oblivious to the mutually non-dominating nature
of these solutions.

Three nonlinear methods that have been used for visualising
many-objective solutions are Self Organising Maps (SOM)
[8], Generative Topographical Mapping (GTM) [21] and Neu-
roscale [5]. All three of these methods aim to preserve local
structure between objective-space solutions.

The SOM [8] is a topographically-arranged network of in-
teracting transformation functions, whose response (displayed
as a degree of excitation of all the component nodes) varies
depending upon the network input. In the basic formulation
(as used in e.g. [22], [6]), the SOM defines a mapping from
the input space onto a two-dimensional array of nodes. Each
node in this array has an associated M -dimensional reference
vector w, and these nodes are compared to any input, y, to
the network, in a parallel fashion. Abstractly, the SOM seeks
to find some best matching node to y, denoted wc, whose
response should be maximised given the input. Additionally,
the learning algorithms incorporated in SOMs seek to instill a
local relationship between neighbouring nodes, such that nodes
that are spatially close to one another in the network topology,
should also be concerned with adjacent regions of input space.
One interpretation of this approach presented in [8] is to view
the trained SOM as a nonlinear projection of the probability
density function of the M -dimensional input into the two-
dimensional display provided by the network.

Fig. 1(g) illustrates the reference vectors associated with
a SOM of the 5-objective DTLZ2 archive. Each hexagon
represents one of the reference vectors in the trained mapping,

and each vector has been coloured according to the objective
of the reference vector which has the best value (determined by
comparing the reference vector to the training data, and seeing
which of its objective values would have the best rank in this
data). From the distribution of colours in the visualisation it is
clear that the reference vectors have been distributed across the
Pareto front and provides a coarse-grained spatially coherent
representation.

The Generative Topographic Mapping (GTM) [21] is an al-
ternative to the SOM which provides a generative probabilistic
model allowing the likelihood of new data to be assessed and
incorporated. It represents the data as a nonlinear mapping to
the high-dimensional data space of a topographically ordered
low-dimensional latent space. The data is then visualised as
its projection into the latent space. The nonlinear mapping is
achieved by a constrained mixture of radial basis functions and
a Gaussian noise model accounts for discrepancies between
the noise-free mapping from latent space to data space and the
observed data. The likelihood corresponding to this generative
model is then maximised using the expectation-maximisation
algorithm in order to learn the model parameters and the
latent visualisation. Fig. 1(h) shows the visualisation of the 5-
objective DTLZ2 front by GTM; individuals have been broadly
clustered into similar groups, as indicated by the colouring, but
there is an imperfect separation into distinct, topographically
coherent regions.

Neuroscale [5], [23] has also been used for many-objective
visualisation [6], [24]. It also uses radial basis functions
to form a nonlinear mapping projecting an M -dimensional
individual y into a Q-dimensional individual ŷ using topo-
graphical information derived from considering the distances
between solutions. The radial basis functions are arranged as
a neural network whose inputs are the high-dimensional solu-
tions and the outputs are the corresponding low-dimensional
solutions. The network weights are adjusted in order to min-
imise the Sammon stress [25]:

K∑
k

K∑
j>k

(
dkj − d̂kj

)2
, (2)

in which dkj is a distance between the individuals k and j in
M -dimensional objective space and d̂kj is a distance between
the corresponding individuals in the Q-dimensional space.
This metric is minimised when the distances between pairwise
individuals in the original objective space and the embedded
space are the same. Fig. 1(i) demonstrates the application of
Neuroscale to the visualisation of the 5-objective DTLZ2 front.
Solutions have been coloured by the objective on which they
best perform, but like PCA, segregation into distinct regions
is unclear. Closely related to Neuroscale is a method in which
solutions are embedded in a 3-objective space by minimising
the Sammon error [26]. This embedding is then presented to a
decision maker as an interactive virtual environment that can
be explored for knowledge discovery.

Clustering approaches have also been used, for example, to
visualise the results of multi-objective nurse scheduling, Fuzzy
C-Means Clustering was used to cluster solutions [27]. The
axes onto which the data were then projected were identified
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using Fuzzy Multiple Discriminant Analysis by finding the
projection that maximises the ratio of within-class scatter and
between-class scatter.

The prosection method [28] visualises a population by
compressing the objectives using prosections. A prosection is
the projection of individuals within a section of the objective
space into a low-dimensional space; in two dimensions, so-
lutions are projected onto a line running through the section
and intersecting the origin. The projections of solutions onto
the line defining the section are then rotated through the
angle between the projection line and one of the axes so
that a dimension is removed. Reducing the dimensionality in
this way has the advantage that if one solution dominates
another then its prosection projection dominates the others
projection. However, two mutually non-dominating solutions
may be projected so that one dominates the other. Additionally,
it is currently only possible to visualise populations of four
objectives or fewer. Another method [29] which seeks to pre-
serve dominance relationships first projects the non-dominated
solutions onto the positive quarter of a circle centred on the
origin. Then a greedy procedure is used to find the position
of each dominated solution that best preserves the dominance
relationships of the original population.

Most of the visualisation methods reviewed in this section
tend to suffer from one of two problems. They are either
lossless and present the entire set of objectives, which often
results in a lack of clarity, or they make a dimension reduction
which loses information about the dominance relations be-
tween solutions. While the prosection method does not always
suffer from these problems, it is currently only applicable to
problems comprising four objectives or fewer. Methods for
enhancing the clarity of (lossless) heatmaps by reordering the
solutions have been investigated by [3] and [17], and in the
following section we investigate spectral methods for reorder-
ing the solutions, objectives and parameters in a combined
heatmap visualisation of both parameter and objective space.
In later sections we investigate dimension reduction methods
that attempt to minimise the loss of dominance information.

III. SERIATION OF HEATMAPS

As illustrated in Fig. 1(e), a heatmap represents the data as
a grid of pixels whose colours indicate values on a scale from
maximal (hot) to minimal (cold). In [3] the use of a heatmap
for presenting both the objective and parameter space views
of solution sets in multi-objective optimisation is presented.
More recently, a heatmap was incorporated into an interactive
multi-objective particle swarm optimisation algorithm [18].
Heatmaps are a particularly useful method for visualising
solution sets to many-objective problems because they allow
the trade-off between objectives to be observed, providing
important information to a decision maker. Their scalability,
both in terms of solutions and objectives, means that they can
visualise large populations of solutions to problems defined
in terms of large numbers of objectives. In addition, this
information is available without having to compress or discard
objectives, meaning that no information is lost in the visu-
alisation process and the original data is recoverable, unlike

techniques such as PCA in which dimensionality compression
discards potentially useful information.

Whilst heatmaps can convey useful information, we identify
two problems: the presence of one or two larger objectives
values in the data means that the full range of colours may not
be used; and, more seriously, arbitrary ordering of the solutions
and objectives in the heatmap hampers its interpretability. Hi-
erarchical clustering has been proposed to ameliorate this [3];
in this paper, we apply a spectral method to seriate solutions
and objectives, placing similar solutions and objectives close
to each other.

The goal of seriation is to construct a permutation over
individuals such that similar individuals are placed close
together, and dissimilar individuals far apart. Seriation has
a long history with early uses in archeology to establish a
chronological ordering of artifacts based on the similarity
of their features [30], and in sociology for grouping similar
people together [31]. An important advance was made in [32],
which introduced a spectral method for finding an approximate
solution to the seriation problem. For an extensive historical
review of seriation see e.g. [33]. Here we use seriation to
reorder the set of non-dominated solutions to a many-objective
problem in both objective space and parameter space, with the
aim of placing similar solutions and objectives close to each
other in the heatmap thus visualising the trends and exceptions
from the trends present in the solutions.

Rather than visualise the objective values ykm themselves,
we rank the solutions on each objective to obtain rkm, the
rank of the k-th solution on the m-th objective. We denote
the vector of M ranks for an individual solution by rk =
(rk1, rk2, . . . , rkM ). This ranking has two principal benefits.
First, the values to be displayed by assigning a colour should
be on a common scale [3]. Ranking the solutions brings them
onto the same range, 1 ≤ rkm ≤ K, without damaging the
dominance relations between solutions, so that rk ≺ rj iff
yk ≺ yj . Second, provided there are no tied ranks, each
ranked value occurs exactly M times, so that each colour in
the heatmap occurs M times, thus using the full range of
colours equally. This is equivalent to histogram equalisation
(e.g., [34]) for each objective and avoids the problem with
linear scaling of objectives, apparent in Fig. 1(e), that detail
is lost because a few large values force the majority of the
heatmap to be displayed in cool colours. Using ranks has the
disadvantage that the ranks must be recomputed if the solution
set changes. However, the cost of recomputation is small and
in this paper we confine our deliberations to static solution
sets with K solutions.

A. Seriation of Solutions
The similarity between solutions can be measured in a vari-

ety of ways, and we examine rank-based similarity measures
below. For a set of K solutions we begin by constructing a
K ×K similarity matrix A describing the similarity between
solutions rk and rj based on the squared difference between
the corresponding ranks:

Akj = 1− 1

M(K − 1)2

M∑
m=1

(rkm − rjm)
2
. (3)
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Since the greatest difference in ranks, which occurs when two
objectives are anti-correlated, is K − 1, it is guaranteed that∑K
m=1 (rkm − rjm)

2 ≤M(K − 1)2, so that 0 ≤ Akj ≤ 1.
In order to place similar solutions together, we seek a

permutation over the solutions π that minimises:

gy(π) =

K∑
j=1

K∑
k=1

Aij(πk − πj)2. (4)

The objective function gy(π) is minimised when similar
solutions are placed close together, and dissimilar solutions far
apart. In general, this is NP-hard because the permutation is
discrete [32]. Instead, [32] suggests an approximation obtained
by relaxing the permutation π to a continuous variable v and
minimising:

h(v) =

K∑
j=1

K∑
k=1

Akj(vk − vj)2 (5)

with respect to v. This relaxed objective is subject to two
constraints. Firstly, to ensure that adding a constant to all vk
does not change the order of the individuals the constraint∑
k vk = 0 is imposed. Also, in order to avoid the trivial

solution in which all vk = 0, we demand that
∑
k v

2
k = 1. The

solution to the constrained problem can be found with linear
algebra. Briefly, the problem is rewritten as h(v) = vTLv,
where L is the graph Laplacian [35], [36] of A defined as
L = D − A with D the diagonal matrix whose elements
are Dkk =

∑
j Akj . Then eigenvectors of L correspond to

stationary points of h(v) [35]. The smallest eigenvalue of
L is zero, with the corresponding eigenvector having equal
elements. A discrete permutation is recovered from the Fiedler
vector [35], the eigenvector corresponding to the smallest non-
zero eigenvalue of L, by ordering the individuals such that the
individual with the k-th smallest value in the Fiedler vector
occupies the k-th position in the permutation. At first sight
locating the Fiedler vector requires a full eigendecomposition
of L, however, the Fielder vector may be identified as the
eigenvector corresponding to the largest eigenvalue of the
complementary graph Laplacian matrix, which may be effi-
ciently found by the power method [37]. Although this method
might be necessary for large populations, for the applications
addressed here the matrix decomposition is computationally
inexpensive (although O(K3)) and very much faster than
exhaustive search which requires O(K!) operations, rendering
it infeasible for K ' 10.

B. Illustration

Throughout this paper, we use a running example dataset
drawn from the domain of many-objective optimisation.
Hughes applied the MSOPS algorithm [38] to the problem
of designing an appropriate set of waveforms that can be
transmitted by a Pulsed Doppler Radar to simultaneously
measure the velocity and distance of a target [10]. To do this,
Hughes optimised a schedule of Pulse Repetition Intervals
(PRIs), which are the times between transmission of radar
pulses. The P parameters x consist of a set of PRI values and
Hughes has provided for results for P = 4, 6, 8, 10 and 12.

These parameters map onto an objective vector y consisting
of M = 9 objectives which characterise different aspects of
the radar signal, together with a final objective which is the
total transmission time for the waveform.
• Objectives 1 and 2 measure the median range and velocity

before the schedule is not decodable.
• Objectives 3 and 4 measure the median range and velocity

before the schedule has blind regions.
• Objectives 5 and 6 measure the minimum range and

velocity before the schedule is not decodable.
• Objectives 7 and 8 measure the minimum range and

velocity before the schedule has blind regions.
• Objective 9 is the time required to transmit the total

waveform in milliseconds.
The first 8 objectives are to be maximised, and the 9th to
be minimised, however in the datasets [39] all objectives
have been organised for minimisation. We use 200 randomly
sampled solutions of the 11938 solutions in the 12 PRI archive
containing the current approximation of the Pareto front as
identified by the MSOPS algorithm.

Fig. 2 shows a heatmap of the radar data. The left hand
panel shows the solutions in their original order, where each
solution, rk in rank coordinates, comprises a row of the
heatmap. The colour-scale extends between 1 and 200 because
with 200 solutions the ranks lie in this range. The central
panel shows the seriated heatmap: clearly similar solutions,
shown by similar colours, have been grouped together aiding
interpretation.

The similarity matrices A before seriation and after se-
riation, with the rows and columns permuted according π,
are shown in Fig. 3. In the seriated case, highly similar (red)
solutions have been aligned along the diagonal, meaning that
the permutation has placed them close together.

C. Seriation of Objectives

Although the seriation of individual solutions shown in Fig.
2(b) brings similar individuals together, the interpretability
of the heatmap can be further enhanced by placing similar
objectives together. To do this, we follow the same procedure,
but using the following M × M similarity matrix, which
measures how similar the m-th and n-th objectives are in terms
of the average squared difference in ranks of the solutions on
those two objectives:

Smn = 1− 1

K(K − 1)2

K∑
k=1

(rkm − rkn)
2
. (6)

Fig. 2(c) shows the result of seriating the heatmap in Fig. 2(b)
with respect to the objectives. Although in this case it would
be feasible to exhaustively test all the 9!/2 permutations,
spectral seriation is significantly faster. As can be seen, similar
objectives have been placed next to each other, grouping all
of the range-based objectives (objectives 1, 3, 5, 7) on one
side of the heatmap and the velocity-based objectives (2, 4, 6,
8) on the other. Interestingly objective 9, which measures the
transmission and decoding time is placed with the velocity-
based objectives and is clearly well-correlated with objectives
2 and 4. Also it is clear that objective 6 (minimum velocity
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(b) Seriation of (2a) w.r.t. Solutions
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(c) Seriation of (2b) w.r.t. Objectives

Fig. 2: Heatmaps of the radar dataset [10]. (a): objectives of the solution set in original order (converted to ranks); (b): solutions after
seriation using similarity matrix A, placing similar solutions together; and (c): solutions after seriation of objectives ordered to place similar
objectives together using similarity matrix S (3). Note that seriating objectives has grouped those objectives relating to range (1, 3, 5, 7)
together, as it has with those relating to velocity (2, 4, 6, 8). The numbering on the left hand side of (c) highlights the best (blue) and worst
(red) solution for each of the 9 objectives.
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Fig. 3: Similarity matrices of the Pulsed Doppler Radar data during
seriation. Left: original similarity matrix, A. Right: A with rows and
columns permuted according to the π found by seriation. Seriation
collects the similar (dark red) solutions so that they lie close to the
diagonal, and pushes the dissimilar solutions (cooler colours) to the
edge.

before schedule cannot be decoded) is least well correlated
with either group, with small values occurring in combination
with large and small range and velocity objectives. We em-
phasise that neither of these observations about the character
of the non-dominated solution set as a whole could have been
made from the original heatmap (Fig. 2(a)).

D. Rank-based Objective Seriation
Rather than the squared Euclidean distance used in the

similarity (6), natural metrics for measuring the similarity
between permutations or ranks are Spearman’s footrule [40],
[41], [42] and Kendall’s τ metric [43]; here we examine their
use in seriation.

Note that the ranks of the solutions on a single objec-
tive m can be written as a K-dimensional vector ρm =
(r1m, . . . , rKm), which is a permutation of the integers
1, . . . ,K.2 Spearman’s footrule is the city block distance
between two permutations [42]. Given permutations of the m-
th and n-th objectives, ρm and ρn, Spearman’s footrule is the
summed absolute difference between the positions of solutions
in the two permutations:

Dmn =

K∑
k=1

|rkm − rkn| . (7)

The maximum possible value of the metric Dmax is

Dmax =

{
K2/2 K even
(K + 1)(K − 1)/2 K odd. (8)

We therefore define a similarity between permutations ρm and
ρn as:

Smn = Dmax −Dmn. (9)

2Note that ρm is K-dimensional vector of ranks corresponding to objective
m, while rk is the M -dimensional vector of ranks pertaining to solution yk .
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TABLE I: Comparison of the permutations produced using spec-
tral seriation with Euclidean distance, Kendall’s τ and Spearman’s
footrule similarities, against optimum quality found by exhaustive
search. Each row of the table shows the quality of the permuta-
tion found using a particular similarity matrix evaluated using the
objective function g(π) for the corresponding column. Bold entries
indicate that the best possible quality has been located by the spectral
method.

gEUC(π) gTAU(π) gSPF(π)

πEUC 7.9038× 102 5.2483× 106 2.6398× 106

πTAU 7.9053× 102 5.2477× 106 2.6445× 106

πSPF 7.9038× 102 5.2483× 106 2.6398× 106

Kendall’s τ metric considers how the pairwise ordering
of individuals differs between permutations. If the relative
ordering between individuals k and j on objectives m and n
is unchanged (rkm > rjm and rkn > rjn or rkm < rjm and
rkn < rjn) then a cost is defined as τkj(ρm,ρn) = 0; other-
wise, if the pairwise relative order is different, τkj(ρm,ρn) =
1. The costs are summed to arrive at the overall metric:

τmn =

K∑
j=1

K∑
k=1

τkj(ρm,ρn). (10)

Here we have assumed that there are no tied ranks, but
alternative formulations are available to cope with tied ranks
[44]. The maximum value of the τ metric, τmax, occurs when
ρm is the reverse ordering of ρn, and is:

τmax = K(K − 1)/2. (11)

Kendall’s τ , like Spearman’s footrule, is a metric and increases
in value as the two permutations become more dissimilar. We
therefore define a similarity:

Smn = τmax − τmn. (12)

To demonstrate the use of permutation metrics for comput-
ing similarity and seriation, we seriated the objectives in a vari-
ant of the radar data. The new dataset consisted of the original
9 objectives together with two additional objectives inserted
at random positions in the data. The first additional objective
yA was produced by averaging two existing, well correlated,
objectives (objectives 1 and 3): ykA = (yk1 + yk3)/2. The
second additional objective yB consists of uniform random
noise; this objective is therefore expected to be uncorrelated
with the rest of the data. We expect that seriation will move the
well-correlated objective close to the objectives from which it
was constructed, while the uncorrelated objective is expected
to be placed away from the correlated groups. The result of
seriating this new dataset is shown in Fig. 4. As can be seen, in
all cases the well-correlated objective (objective A) is placed
next to both of the objectives upon which it is based. In
addition, the uniform random objective (objective B) is placed
in the middle of the heatmap, between the two groups of well
correlated objectives.

Returning to the original 9-objective radar archive, it is
feasible to evaluate all of the 9!/2 distinct permutations of
objectives in order to examine the quality of the approximate

solution under the three metrics. Table I presents the results of
this analysis. If gS(π) =

∑
m

∑
n Smn(πm−πn)2 is the qual-

ity function to be minimised, then each row of the table gives
the quality of the permutation which was found by spectrally
seriating with the similarity matrix for that row (equations (6),
(12) and (9)), but with the quality g(π) evaluated using the
similarity matrix for the corresponding column; for example,
on the first row, πEUC is the permutation found by spectrally
seriating according to the Euclidean distance metric. We then
consider the quality of this permutation using the Euclidean
similarity matrix and the similarities based on Kendall’s τ
and Spearman’s footrule. Qualities highlighted in bold indicate
that the permutation is the best found by exhaustive search.
Reassuringly, as indicated by the bold diagonal entries, for
each of the similarity matrices, the spectral seriation has
located the best permutation. However, as the spectral method
is an approximation this will not always be the case, especially
for more objectives. Interestingly we note that the Euclidean
and Spearman’s footrule similarities perform identically and
the only difference with the Kendall’s τ seriation is the
reversed order of objectives 9 and 4 (see Fig. 4). We observe
that, as here, seriations according to Spearman’s footrule and
Kendall’s τ are usually very similar, perhaps unsurprisingly
in light of the inequalities τmn ≤ Dmn ≤ 2τmn [42]. In
general we recommend Spearman’s footrule for its simplicity
and speed of calculation.

IV. JOINT SERIATION OF DECISION AND OBJECTIVE
SPACES

In the previous section we showed how spectral seriation
can be used to reorder objective space heatmaps to en-
hance their interpretability. It is often of interest to view
the parameter space solutions {xk} alongside their objective
space counterparts. Examples of visualisations that incorporate
information from both parameter and objective space are [3]
and [45]; the method proposed in [3], employing a heatmap,
is of particular interest and we discuss it later in this section.
In this section we show how to simultaneously optimise the
parameter space and objective space views. We assume that the
parameters are real valued xkm ∈ R which allows meaningful
distances between parameters to be calculated. As with the
objective space case, it is necessary to normalise the parameter
values so that the heatmap uses the full range of colours to
represent them.

A straightforward way of jointly seriating parameter and
objective space is shown in Fig. 5 for a population of solutions
to the test problem WFG8 from the standard Walking Fish
Group test problem suite [12]. The population comprises 200
solutions to a 10-objective instance of the problem, where the
number of parameters is 38. The solutions were sampled from
the known Pareto optimal set. Here, the solutions yk have
been seriated in objective space with respect to objectives
(reordering the columns) and then solutions (reordering the
rows), which yields the heatmap shown in the lower right-
hand panel of Fig. 5.3 Then, solutions xk in parameter space

3Note that the same result would have been obtained by seriating first with
respect to solutions (rows), and then by objectives (columns).
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(a) Seriated w.r.t. solutions
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(c) Spearman’s footrule
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(d) Kendall’s τ metric

Fig. 4: Seriation according to different metrics. The radar data has been modified to include an objective produced by summing objectives 1
and 3 (objective A) and an objective entirely comprised of uniform random noise (objective B). Prior to seriation of objectives, the solutions
have been seriated to produce the population shown in (a).

have been reordered to match the order of the solutions in
the seriated objective space (that is, the rows of the bottom
lefthand panel), and finally the parameters (columns) were
seriated to place similar parameters close to each other. As
is common for many test problems, the parameters of WFG8
are grouped into two types. In this instance of the problem,
18 of the parameters are position parameters, which control
the region of the Pareto front on which the solution lies. The
remaining 20 are distance parameters, controlling the distance
of the solution from the Pareto front. As can be seen in the
figure, the distance parameters have been grouped together
in the centre of the heatmap. The position parameters, which
consist of a uniform spread of values, have been moved to
the sides of the heatmap. In a similar manner to objective
space seriation, the order of parameters was seriated by using
spectral seriation to approximately minimise

gx(π) =

K∑
j=1

K∑
k=1

Λkj(πk − πj)2. (13)

The objective function gx(π) requires a parameter space
measure of the similarity of solutions. Since ranking solutions
in parameter space is meaningless we measure the parameter
space similarity of solutions xk and xj using their correlation
or the well-known cosine similarity:

Λkj =

∑
p xkpxjp√∑
p x

2
kp

∑
p x

2
jp

, (14)

which is the cosine of the angle between xk and xj . We also
provide an example later using the negative mean difference
of solutions

Λkj = −
∣∣∣∣∣
P∑
p=1

(xkp − xjp)
∣∣∣∣∣ (15)

which has the effect of placing solutions with parameters of
the same magnitude together. However, particular optimisation
problems may suggest alternative measures of parameter space
similarity to those used here.

As Fig. 5 shows, the resulting ordering of parameter-
space solutions (induced by the objective space ordering of
solutions) has in general placed those solutions with larger
parameter values together at the top of the heatmap and the
seriation has revealed a clear correlation of larger parameter
values with solutions which optimise objective 10 well, while
the remainder of the objectives are best optimised by small
parameter values. Clearly, however, reordering the parameter
space solutions by the objective space seriation has not in-
duced the same improvement in clarity as we have previously
demonstrated in objective space; in a perfect reordering, all of
the large-parameter solutions would reside in the top half of
the heatmap, and all of the small-parameter solutions would be
placed near the bottom. We discuss an approach to resolving
this later in this section. The seriation of parameters has,
however, produced a good result. Later in this section we show
a similar seriation for solutions to the radar data.

Fig. 6 presents the same data, this time using the visuali-
sation method presented by [3]. Here, unlike the method we
propose, the objectives and parameters are visualised with a
single heatmap, and the columns of the heatmap are clustered
so that both objectives and parameters are reordered together.
Solutions are clustered with single linkage hierarchical clus-
tering based on the Euclidean distance between their nor-
malised objective values. Similarly, objectives and parameters
are clustered together. As in Fig. 5, the distance parameters
have been gathered together, however the position parameters
and objectives are intermixed. This makes observation of the
trade-off between objectives more difficult and we prefer a
visualisation that keeps the two spaces separate. Additionally,
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(a) Before seriation
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(b) After seriation

Fig. 5: Seriation of both objective and parameter spaces for the WFG8
test problem. The upper panels show heatmaps of parameter space
(left) and objective space (right). The lower panels show the result of
first seriating the objectives, followed by the solutions according to
their objective space similarity (bottom right). The resulting solution
ordering is then applied to the solutions in parameter space, and the
parameters themselves are seriated to yield the bottom left heatmap.

the need to cluster both spaces together requires that a common
normalisation for parameters and objectives be found.

Whilst the example in Fig. 5 was seriated according to
objective space solutions, after which parameter-space solu-
tions were reordered to match the objective-space seriation,
it could justifiably be done the other way around. However,
there is clearly a trade-off between the quality of the solution
orderings in parameter and objective spaces. The simultaneous
clustering method [3] obscures the trade-off, giving unknown
relative weights to parameters and objective spaces. Here we
therefore seek to simultaneously optimise the ordering in both
by using a two-objective evolutionary algorithm to locate the
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Fig. 6: A heatmap of the WFG8 parameters and objectives, reordered
with hierarchical clustering as proposed by [3]. As in the other
heatmaps presented here, a row represents a solution and a column is
either an objective or a parameter (columns representing an objective
are marked on the abscissa). Solutions were clustered with single
linkage clustering based on the Euclidean distance between nor-
malised objective values, and objectives and parameters are clustered
together. Dendrograms show the clustering for solutions (on the left)
and objectives and parameters (top).

approximate the Pareto front between gy(π) and gx(π) (cf. (4)
and (13)).

We use a (µ + λ)–evolution strategy with a passive elite
archive to explore the trade-off between the quality of the
ordering in the two spaces as described in Algorithm 1.4

A population of µ permutations is maintained and at each
generation is mutated to generate λ offspring, which are
evaluated under the two objective functions (lines 5 and 6).
Non-dominated permutations are added to the elite archive
E and any permutations which the new entrants dominate
are removed (line 7). The best µ permutations of a Pareto
sorting [47] of the union of the parent and child populations are
retained to form the parent population for the next generation
(line 8).

Mutation was achieved by block transposition, in which
a block of elements are swapped with a second block of
elements, and shuffle transposition, in which the elements in
a block are shuffled at random [48]. Half of the time a single
randomly-chosen method was used; otherwise both methods
were used in a randomly chosen order. In all cases the block
length was randomly chosen in the range [1, bK/10c].

The population was initialised with permutations generated
by seriating using a convex combination of the objective and
parameter space similarities:

Sη = ηA + (1− η)Λ (16)

4This differs from the (µ + λ)–evolution strategy variants of the popular
Pareto Archived Evolution Strategy [46], which use an active archive.
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Fig. 7: Optimised trade-off between seriation quality in parameter space gx(π) and objective space gy(π) for the WFG8 solution set. The
main panel shows the initial solutions from seriation using the similarity matrix Sη (16) as plus symbols (also shown in the insert) and the
combined estimated Pareto front from 10 runs of the evolutionary optimiser. The heatmaps on the right-hand side of the figure correspond
to optimised solutions marked on the main panel by large circles. The top and bottom visualisations are the solution orderings found by the
MOEA which best optimise the parameter space ordering and objective space ordering respectively. The central heatmaps show a solution
towards the centre of the Pareto front. Objectives and parameters have also been seriated independently. Parameter space seriation has grouped
parameters x roughly into those which control the distance of a solution from the true Pareto front and those which control the angular
location of a solution on the front.

Algorithm 1 Multi-objective (µ+ λ)–evolution strategy with a passive elite archive for seriation.

1 : {πi}µi=1 := initialise permutations() Initialise µ permutations
2 : {vi}µi=1 := {(gx(πi), gy(πi))}µi=1 Evaluate the permutations in terms

of the seriation qualities
3 : E := extract nondominated({(vi,πi)}µi=1) Initial estimate of the Pareto set
4 : for t := 1 : s For s generations
5 : {π′i}λi=1 := mutate({πi}µi=1) Mutate parents to create children
6 : {v′i}λi=1 := {(gx(π′i), gy(π′i))}λi=1 Evaluate children
7 : E := update elite archive(E, {v′i}λi=1, {π′i}λi=1) Update estimate of the Pareto set
8 : {(vi,πi)}µi=1 := sort and extract({(vi,πi)}µi=1 ∪ {(v′i,π′i)}λi=1, µ) Combine the populations, sort, and

extract the µ highest ranked
9 : end

with η chosen at equal intervals from η = 0 to η = 1, so that a
range of permutations is produced from those focusing entirely
on parameter space similarity to those focusing entirely on
objective space. In the results presented here the population
size was 100, and we set µ = λ, so each parent is mutated
into a single child.

Fig. 7 shows the combined non-dominated permutations
from 10 runs for the 200 WFG8 solutions and objectives
used previously. As the main panel shows, the solutions after
optimisation are very close to the initial solutions found via
equation (16).

The inset panel shows the objectives resulting from the
seriations of Sη used to initialise the evolutionary popula-
tion, together with the gx(π) and gy(π) corresponding to
200 randomly chosen permutations. Clearly the initialisation
using Sη provides a very good approximation to the trade-
off between gx(π) and gy(π) as identified by the MOEA.
Although the MOEA has improved the front slightly, its main
effect in this case has been to remove dominated members
of the seeded initialisation set and to fill in the gaps in the
initialisation set. Whilst it is useful for a decision maker to
have a full Pareto front on which to base their selection of
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Fig. 8: Optimised trade-off between seriation quality in parameter space gx(π) and objective space gy(π) for the radar data. The main panel
shows the initial solutions from seriation using the similarity matrix Sη (16) as pluses (also shown in the insert) and the combined estimated
Pareto front from 10 runs of the evolutionary optimiser. The heatmaps on the right-hand side of the figure correspond to optimised solutions
marked on the main panel by large circles. The top and bottom visualisations are the solution orderings found by the MOEA which best
optimise the parameter space ordering and objective space ordering respectively. The central heatmaps show a solution towards the centre
of the Pareto front. Objectives and parameters have also been seriated independently.

operating point, the MOEA has failed to uncover much beyond
the original initialisation set, although of course the dominated
solutions corresponding to low objective-space qualities gy(π)
have been eliminated. The heatmaps on the righthand side of
the main panel show the seriations produced by solutions along
the Pareto front approximation. The top heatmaps represent
the solution highlighted at the top of the approximate front
which is the best ordering with respect to parameter space.
The bottom heatmaps show the solution highlighted at the
bottom of the approximate front, namely the best objective
space ordering found and are essentially the heatmaps shown
in the bottom row of Fig. 5. The middle heatmaps represent
a compromise between the objective space and parameter
space coherence. There is a clear reduction in seriation quality
when parameter space is ordered in terms of objective space
similarity and vice versa. However, it may be worth accepting
this compromise in order to be able to view the two spaces
together.

We also demonstrate the result of optimising the joint
seriation of parameters and objective vectors for the radar
data. Fig. 8 presents the result of this optimisation, and
was produced by following the same procedure as that used
to produce Fig. 7 – this time utilising the negative mean
difference as the parameter space solution similarity (15).
As before, the MOEA was seeded with 100 permutations
obtained from seriating Sη for linearly spaced η and the non-

dominated permutations from the union of 10 runs are shown.
Like the WFG8 population, the MOEA has found permutations
which have only a marginal improvement over the initialised
seriations of Sη . For this particular problem, however, it is
clear to see that seriating solutions in objective space also
leads to a good ordering of solutions in parameter space (and
vice versa) and that either seriation is difficult to improve
upon. This indicates a strong correlation between solutions
and objective vectors, providing useful information to the
problem owner and we emphasise that this radar problem
is a real problem rather than a synthetic test problem. We
also draw attention to the marked improvement over random
permutations when using spectral seriation with any of the Sη .

It is not always possible to achieve an ordering that simulta-
neously groups like solutions in parameter space and objective
space. Nonetheless these two examples illustrate that a seri-
ation which compromises between parameter space grouping
and objective space grouping can be a helpful visualisation,
particularly as it allows the investigator to assess objectives
and parameters together.

Although on a limited number of examples, these results
indicate that seriation of convex combinations of A and Λ
provides a very good indication of the approximation to the
Pareto front achieved by the MOEA. We note that there may
be examples where a MOEA can improve more significantly
on the convex combination defined in (16). Here we have
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used the cosine similarity and negative mean difference for
measuring the proximity of parameter vectors, however, the
choice of similarity is less clear than for objective space, where
conversion to ranks simplifies the choice. Other similarity
measures may be more useful for other specific problems,
particularly for categorical parameters for which there is no
natural ordering.

Visualising both the parameter and objective spaces together
can be useful for a decision maker, and this section has pre-
sented a lossless technique for producing such a visualisation.
As heatmaps are not restricted in terms of dimensionality or
the number of solutions that they can represent, they are an
important tool for the many-objective optimisation community,
and we have outlined a simple technique for enhancing their
clarity to support their use in decision making. In addition to a
relatively low computational complexity, the spectral seriation
method is flexible in that it allows the choice of a similarity
measure that specifically suits the type of optimisation to be
visualised.

V. VISUALISATION IN THE PLANE

Visualising solutions as points in the two-dimensional plane
is appealing and intuitive. People are well adapted to under-
standing maps and diagrams in which physical proximity of
points indicates that the points are similar, and Gestalt theories
suggest how the human perceptual system can organise group-
ings of points into perceptually significant clusters. Methods
such as PCA, SOM, Neuroscale and the GTM are all general
purpose dimension reduction techniques that can be used
to represent M -dimensional objective vectors as coordinates
in the plane; they all attempt, explicitly or implicitly, to
preserve in the plane the distances between points in the
original M dimensions. These methods for general data are
however ignorant of the mutually non-dominating nature of
the solutions to multi-objective problems. In this section and
section VI we examine two techniques for obtaining planar
representations of a set of solutions which use the mutually
non-dominating nature of the solutions.

The first method is closely related to RadViz [9], [49]
which, along with related methods, has been extensively used
for visualising multivariate data in “radial” coordinates [50],
[51]; see [52] for an insightful derivation of the properties
of RadViz and related “normalised radial visualisations”. A
frequently used analogy for understanding RadViz involves
“anchor points” which are chosen on the circumference of a
circle in the plane. Each of these anchor points is associated
with a coordinate in the high dimensional space. The point
to be visualised is imagined to be connected to the anchor
points by springs whose stiffness is proportional to the point’s
corresponding high-dimensional coordinate; it is visualised in
the plane by the location at which the spring forces are in
equilibrium. To our knowledge RadViz has not be used for
visualising sets of mutually non-dominating solution objec-
tives. In this section we therefore give a new derivation of the
RadViz algorithm using barycentric coordinates and emphasise
why it may be useful for visualising mutually non-dominating
sets.

y1

y2

y3

λ3

λ2

λ1

O

y

ŷ

Fig. 9: Projection of a point y onto the simplex defined by
{λ1, λ2, λ3}; y is projected to ŷ.

Put simply, barycentric coordinates are used to map solu-
tions from M dimensions to the interior of a regular planar
polygon with M vertices. Without loss of generality, we
assume that the solutions yk to be visualised are all non-
negative (ykm ≥ 0 for all k,m). Then the simplex defined by
the numbers {λm : λm > 0}Mm=1 is the portion of the (hyper-)
plane that lies in the positive orthant and which intersects the
coordinate axes at distances λm from the origin, as illustrated
in Fig. 9. The simplex is therefore the segment of the plane
in the positive orthant defined by

n · y = d ym ≥ 0, m = 1, . . . ,M (17)

where the elements of the unit vector n normal to the simplex
are nm = d/λm and the perpendicular distance to the origin
d can be found as

d−2 =

M∑
m=1

λ−2m . (18)

We project the mutually non-dominating set of solutions onto
the simplex by:

ŷk = yk/(yk · n). (19)

Importantly, note that a mutually non-dominating set remains
mutually non-dominating after projection onto the simplex, so
dominance relations are preserved by this projection. However,
since all points on the ray from the origin through y are
projected to ŷ this projection obscures the relations in general
sets of points.

The ŷk are now mapped to the plane using barycentric
coordinates as follows. Barycentric coordinates are well known
for triangles, but the idea is readily generalised to convex
polygons in the plane and to simplices in more than two
dimensions such as the vertices of the simplex described above
[53], [54]. Let λm = (0, . . . , λm, . . . , 0) be the position vector
of the m-th vertex. Then the barycentric coordinates of ŷ are
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defined as the weights ωm so that

ŷ =

M∑
m=1

ωmλm (20)

with the constraints that ωm ≥ 0 and
∑
m ωm = 1. When

ŷ is close to vertex λm then ωm is large and the other ωn,
n 6= m, are small. If, instead, the {λm}Mm=1 define the vertices
of a convex polygon in the plane, then the ωm correspond to
the weights that must be placed at the vertices in order to
balance the polygon on a spike at ŷ. Note that there is a
redundancy in the M barycentric coordinates because M − 1
of them completely determine the remaining one through the
constraint that they sum to 1; in an M -dimensional space this
may be viewed as arising from the constraint that ŷ is confined
to the (M − 1)-plane of the simplex.

The vector of the first M − 1 barycentric coordinates
corresponding to ŷ is found as

ω1:M−1 = B†(ŷ − λM ) (21)

where B is the M × (M − 1) matrix whose m-th column is
λm−λM , and B† ≡ (BTB)−1B denotes the pseudo-inverse
of B. Then ωM = 1−∑M−1

m=1 ωm.
Let vm, m = 1, . . . ,M be the vertices of a regular polygon

P in the plane, centred on the origin:

vm =

[
cos(2π(m− 1)/M)
sin(2π(m− 1)/M)

]
. (22)

An M -dimensional point in the simplex ŷ is mapped to the
point z in P that has the same barycentric coordinates ω as
ŷ, namely

z = Vω (23)

where V is the matrix whose columns are the vectors vm.
The vertices of P are identified with the objectives to be
minimised. Thus a solution yk that has a large value ykm for
the m-th objective will be mapped close to the m-th vertex
vm. Solutions which have approximately equal values on all
objectives will be mapped close to the centre of the polygon.

There remains an additional degree of freedom because
the identification of which vertices of P correspond to which
objectives has not been made. If P is an M -dimensional
permutation matrix, then (23) may be modified to

z = VPω (24)

where we are at liberty to choose the permutation. Since
the vertices may be considered to lie on a circle and clock-
wise and anti-clockwise permutations are equivalent there are
(M − 1)!/2 distinct permutations. Methods such as VizRank
[55], which are used for visualising data labelled into classes,
use heuristic search to locate permutations which give good
separations of the classes in the visualisation plane. Here
solutions do not belong to naturally defined classes5 although
it would be possible to search for permutations which yield
good clusters in the visualisation. A further possibility to
determine the order of the objectives around the vertices of

5One possibility would be to assign labels according to the objective on
which the solution has best rank, as done to colour solutions in Fig. 1.

P is to minimise a stress measuring how well near-neighbour
distances are preserved in the projection into P; see [5] and
[56] for examples of this approach in other contexts. Here
we elect to order the objectives around the polygon so that
similar objectives are placed near to each other. Empirically
we find that this tends to place solutions which are near
neighbours in objective space close to each other in the
planar representation. As above, we use Spearman’s footrule
to measure the similarity of two objectives, fm and fn, by the
sum of the absolute differences between the ranks of solutions
on those two objectives:

Smn = Dmax −
K∑
k=1

|rkm − rkn| (25)

This periodic seriation problem may be solved in a similar
manner to the linear seriation already described [57].

In summary, the visualisation is found by projecting y
to ŷ on the simplex using (19), which allows barycentric
coordinates ω to be found via (21), after which the coordinates
in the plane z are calculated with (24). The order of the
vertices is chosen by periodic seriation using (25) to measure
the similarity of objectives.

The computational complexity of the projection (dominated
by finding the pseudo-inverse (21)) and seriation is O(M3).
For the numbers of objectives typically involved in many-
objective optimisations the computation is sufficiently fast to
be incorporated in interactive tools.

Fig. 10 shows the visualisation of three examples from well-
known test problems. The problem DTLZ6 [11] has a Pareto
front comprising several disconnected “cushions”; the four
clusters are evident in the visualisation of 500 solutions on the
true Pareto front shown in Fig. 10(a) for M = 3 objectives.
If the planar representation zk of a solution yk lies close to
vertex vm then the objective ykm tends to be large, or the
objectives on the opposite vertices are small. Solutions with
similar values for all objectives tend to be mapped close to
the centre of the polygon.

The solutions are coloured by their average rank:

r̄k =
1

M

M∑
m=1

rkm. (26)

The visualisation reveals the symmetry between objectives
y1 and y2. It is clear that very good (low, blue) average
rank solutions are achieved only at the expense of large y3;
likewise intermediate average rank solutions (average rank
≈ 230, coloured cyan) are found close to the y3 – y1 and
y3 – y2 edges which correspond to small values of y2 and y1
respectively. However, the projective nature of the visualisation
means that it is unable to uncover the distinct clusters in
the DTLZ6 problem with M = 4 objectives, as shown in
Fig. 10(b) (none of the alternative permutations of the vertex
order are more successful). Nonetheless, it does reveal the
symmetry between objectives y1 and y3 and the distinguished
axis y4, and in conjunction with the average rank colouring,
permits the decision maker to explore regions of low and high
rank solutions. As a final test problem example we show in
Fig. 10(c) the visualisation of the degenerate front for the
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Fig. 10: Visualisation in the plane using RadViz. Vertices of the polygon are labelled by the objective to which they correspond. A solution
close to a vertex m tends to have a large ym, while solutions with approximately equal objectives lie close to the centre of the polygon.
Solutions are coloured by their average rank.
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Fig. 11: Visualisation in the plane of the radar data solutions. Vertices
of the polygon are labelled by the objective to which they correspond.
Solutions are coloured by their average rank. The best and worst
solutions for each objective are labelled in blue and red respectively.
A solution close to a vertex m has a large ym.

Walking Fish Group problem WFG3 with 5 objectives. As
the visualisation clearly shows this front is a one-dimensional
curve through objective space, terminating on the y5 axis. The
visualisation maps straight lines in objective space to straight
lines in the visualisation plane [52].

Fig. 11 shows the 200 solutions of the 9-objective radar data
used earlier mapped to the interior of a nonagon. As before
solutions are coloured according to their average rank, and
the best and worst solutions for each objective are labelled in
blue and red respectively. Clearly there is some information
loss resulting from the projection onto the plane and the ykm
themselves cannot be simply read from this diagram, but the
representation places solutions with similar objective values

close together in the plane. As before, solutions which have a
poor value on objective m tend to be placed close to vertex
vm, while solutions which have a good value for an objective
tend to be placed opposite that objective, for example in this
plot the best solutions for y6 and y8, which also have low
average rank. We note also that solutions with extreme values
of the objectives tend to be placed around the “edges” of the
visualisation in keeping with the intuition that the extremes lie
on the edges. The grouping of similar objectives together with
periodic seriation further enhances interpretability because if
a solution tends to have large values for a group of objectives
it can be placed close to that group.

The choice of values for the λm determining the simplex in
objective space clearly affects the visualisation, however we
find that it is insensitive to the precise choice; for example,
setting λm to be the mean or median of ykm makes the
visualisation relatively invariant to scaling of the objectives.
Rather than a linear scaling, however, we prefer to transform
the set to “rank coordinates” rkm as described above for
heatmaps. This was done to produce Figs. 10 and 11. Choosing
the λm = λ for all m then treats objectives equally and the
precise value of λ is irrelevant.

Diagrams such as Fig. 11 have their greatest utility in
interactive tools that allow the decision maker to interrogate
particular solutions.6 Understanding and choice of a particular
solution is also be facilitated by colouring the solutions as in
the figures, where solutions are coloured by their average rank
(26). Low average rank tends to indicate those solutions which
achieve relatively good objective values on all objectives, and
may be promising candidates for decision makers seeking a
trade-off between objectives. We have investigated colouring
with a variety of alternative measures of solution quality, such
as preference ordering [58] and the power index [59], [60],
[61], [62] adapted for use with many-objective populations
[7]. Overall we find that the average rank, which is equivalent
to the outflow ordering [63], [7], is simple to compute and
provides the same qualitative information as alternatives.

6An interactive tool is available from http://emps.exeter.ac.uk/staff/reverson
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Fig. 12: Planar visualisation of convex outwards (left) and concave
(right) sets with 3 (top) and 5 (bottom) objectives. Solutions are
coloured by average rank.

The average rank also provides an interesting interpretation
of the projection of the rank coordinates rk onto the simplex.
As described above (cf. Fig. 9 and equation (19)), a solution
yk in ranked coordinates rk is projected onto the simplex to r̂k
by contracting it by a factor γk = ‖r̂k‖/‖rk‖ = rk · n where
n is the unit vector normal to the simplex. If, as suggested
above for rank coordinates, the simplex is chosen with all
the λm equal, then n = 1/

√
M , where 1 is a vector of 1s.

Consequently γk = rk · 1/
√
M ∝ r̄k, the average rank. Thus

the average rank of a solution is proportional to the factor by
which the solution (in rank coordinates) must be contracted in
order that it lies on the simplex. Solutions with low average
rank are close to the simplex, whereas solutions with high
average rank are distant from the simplex.

This observation can be used to infer some information
about the configuration the solutions. Solution sets which are
convex outwards (such as the Pareto front for the DTLZ2
problem shown in Fig. 1(b)) have low average rank solutions
towards the edge of the set, while low average rank solutions
tend to be on the periphery when the set is concave. This is
illustrated in Fig. 12 for 3 and 5-dimensional solutions lying
on convex and concave fronts:7 clustering of the high average
rank solutions in the centre of the convex is evident, while
high average rank solutions tend to be closer to the edges for
the concave case.

VI. DOMINANCE DISTANCE FOR MULTIDIMENSIONAL
SCALING

The planar visualisation method presented in the previous
section is an explicitly geometric construction that transforms
the corners of the simplex in objective space to the vertices

7Solutions on the convex front in three dimensions lie on the positive octant
of a spherical shell centred on the origin. Solutions on the concave front lie
on the negative octant of a spherical shell centred on the origin and then
translated by (1, 1, 1). Likewise for 5 objectives.

of a polygon. Although this method, unlike general dimension
reduction methods such as PCA, GTM, Neuroscale and the
SOM, takes account of the mutually non-dominating nature
of the solutions, it does not take into account the relations
between objectives. Here we define a new measure of the
similarity of solutions, which attempts to capture the degree
of dominance between solutions. This “dominance distance”
is then used to embed the solutions in Euclidean space via
metric multidimensional scaling (MDS) [64], [65].

Although the solution sets to multi- and many-objective
problems comprise mutually non-dominating solutions, for
generality we consider sets of points {yk}, some of which may
dominate others. We regard two points yk and yj as similar
if they both dominate a third point yp or are both dominated
by yp or are both mutually non-dominating with yp. Refining
this idea, we define the similarity of yj and yk relative to yp
as proportional to the number of objectives on which yj and
yk have the same relation (greater than, less than, or equal)
to yp. Thus

S(yk,yj ; yp) =
1

M

M∑
m=1

[
I((ypm < ykm) ∧ (ypm < yjm))

+ I((ypm = ykm) ∧ (ypm = yjm))

+ I((ypm > ykm) ∧ (ypm > yjm))
]

(27)

where I(p) is the indicator function that is 1 when the
proposition p is true and 0 otherwise. The second term in
(27) accounts for exact equality on an objective; although this
occurrence is very rare with real-valued objectives it may arise
with integers or as the result of rounding during measurement,
see for example [66]. We define the distance relative to yp as:

D(yk,yj ; yp) = 1− S(yk,yj ; yp). (28)

The dominance distance is obtained by averaging
D(yk,yj ; yp) across all the elements of the set:

D(yk,yj) =
1

K − 2

K∑
p=1

p/∈{k,j}

D(yk,yj ; yp). (29)

Theorem 1: The dominance distance (29) is a metric.
Proof: It is clear from (27) that D(yk,yj) = D(yj ,yk).

Since the maximum value of the sum in (27) is 1, 0 ≤
S(yk,yj ; yp) ≤ 1 and therefore D(yk,yj ; yp) ≥ 0 and
D(yk,yj) ≥ 0. It is easily checked by direct substitution
in (27) that S(y,y; yp) = 1 for all yp, so D(y,y) = 0.
Conversely, S(yj ,yk; yp) = 1 for all yp only if ykm = yjm
for all m. Thus D(yk,yj) = 0 iff yk = yj .

To see that D(·, ·) obeys the triangle inequality we associate
with yj and yk strings bj and bk of length M on an alphabet
of the symbols {−1, 0,+1}, so that a −1 in position m of the
string for yk indicates that ykm < ypm, a +1 if ykm > ypm,
and 0 if ykm = ypm. For example, with M = 7 objectives:

m 1 2 3 4 5 6 7
bj −1 −1 +1 +1 −1 +1 0
bk −1 +1 −1 +1 +1 +1 −1
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Fig. 13: Dominance distance MDS visualisations of the DTLZ6 test
problem. Solutions are coloured by their average rank. The grey lines
indicate the edges of the axis-parallel bounding box of the data which
meet at the global best point. The best and worst solutions on each
objective are labelled by that objective in blue and red respectively.

Here yj is greater than yp on objectives 3, 4 and 6, and yj7 =
yp7, while yk is greater that yp on objectives 2, 4, 5 and 6.
Then M × D(yk,yj ; yp) is the Hamming distance between
the strings bj and bk, namely the number positions in which
their symbols disagree. In the example D(yj ,yk; yp) = 4/7.
The Hamming distance is well known to be a metric which
shows that D(·, ·) is also a metric.

A further characterisation of the dominance distance is
provided by noting that with one objective (M = 1) the
distance is just the sum of the difference in the ranks:
D(yk, yj) = |rk − rj |. Consequently

D(yk,yj) =
1

M

M∑
m=1

|rkm − rjm| (30)

so the distance between individuals is measured by the average
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Fig. 14: Dominance distance MDS visualisations of the radar data. In
Fig. 14a solutions are coloured by their average rank, whilst in Fig.
14b they are coloured by the objective for which they have the best
rank, as were solutions in the example visualisations shown in Fig. 1.
The grey curves indicate the edges of the axis-parallel bounding box
of the data which meet at the global best point. The best and worst
solutions on each objective are labelled by that objective in blue and
red respectively.

magnitude of the difference in their ranks on each objective.
Note that this is not the magnitude of the difference of their
average ranks. Equation (30) provides an efficient method
of calculating D(yk,yj) compared with a straightforward
application of (27) and (29).

Since D(·, ·) is a metric, obeying the triangle inequality, the
matrix with elements Dkj ≡ D(yk,yj) is a Euclidean distance
matrix [67], [68] and there exists a set of points zk ∈ RK
separated by Euclidean distances ‖zk − zj‖ = Dkj .

If F = ZZT is a decomposition of

F = −1

2

(
I − 11T

K

)
D

(
I − 11T

K

)
(31)
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then the rows of Z are coordinates of the points that generate
D. Metric multi-dimensional scaling [69], [64], [65] finds a
spectral decomposition of F, which is positive semi-definite,
and projects the embedding onto the principal eigenvectors
of F, thus retaining the best linear approximation (in a least
squares sense) to the full embedding. Spectral decomposition
of F has a computational complexity of O(K3), however,
projections of several hundred points can easily be achieved in
a second and if necessary the procedure might be made more
efficient by finding only the principal few eigenvectors of F.

Fig. 13(a) shows 500 3-objective DTLZ6 solutions pro-
jected onto the principal two eigenvectors of F. As before
solutions are coloured by their average rank. Also marked
are the best and worst solutions for each objective and the
edges of the axis-parallel bounding box which contains the
solutions which meet at the global best point [70], namely
(mink(yk1),mink(yk2), . . . ,mink(ykM )); these edges are par-
allel to the coordinate vectors in the M -dimensional space.
The visualisation reveals the symmetry between objectives
y1 and y2, with y3 a distinguished objective. Note that the
worst solutions on each objective are mapped close to the
ends of bounding box axes, while the best solutions are op-
posite these ends, indicating that the visualisation is providing
a topographic representation from the dominance distance,
which is itself based only on the greater than or less than
relations between solutions. It is clear from the visualisation
that good average rank (dark blue) corresponds to poor values
of y3 and good y3 solutions are only obtained by having a
poor average rank. Note that although the distinct clusters are
not evident, the average rank shows that there are isolated
patches of high and low rank. The original clusters are not
visible because the dominance distance discards raw distance
information, favouring instead information about the relative
quality of solutions.

Fig. 13(b) shows solutions from the 5-objective version of
the test problem. It is apparent that the visualisation has iden-
tified a remarkably similar structure and symmetry inherent
in the solution set despite the additional two objectives. The
last objective y5 is again distinguished and there is a good
correlation between objectives y1 and y2 (the bounding box
axes are mapped almost on top of one another), and between
y3 and y4.

The dominance distance visualisation of the degenerate
WFG3 solutions (cf. Fig. 10(c)) maps the solutions to a single
line along the coordinate axis with solutions arranged by
average rank along it, and there is only a single non-zero
eigenvalue of F.

Fig. 14 shows the dominance distance visualisation of 200
radar data solutions. As indicated by the bands of colour,
which represent bands of similar average rank, in Fig. 14(a) the
method has produced a diagram which groups similar solutions
together, allowing a decision maker to identify groups of
solutions which have similar relations to other solutions in
the set. Here the low-average rank solutions are located along
the top of the “crescent” of solutions. There are bands of
solutions with similar average rank running along the length of
the “crescent”. Those at one end of the “crescent” are related
to other solutions in ways more similar to each other than

those at the other end; that is, solutions at one end all tend
to be greater than or less than other solutions on the same
objectives. Note that the bounding box axes, which are more
distant from the front than in the DTLZ6 front, are grouped
into those associated with range (objectives 1, 3, 5 and 7) and
those associated with velocity (objectives 2, 4, 6 and 8). It
is interesting to note that the axis for y9 has been placed
close to y4 and near to the y2, y8 and y6 axes, which is also
the result of seriating the objectives for heatmap visualisation
(cf. Fig. 2(c)). The visualisation shows that the low average
rank solutions are associated with good values for y2, y6 and
y8, while the best solutions for the other objectives, located
near the horns of the crescent, have high average rank and
are close to (or identical to) solutions which are very poor on
other objectives.

We emphasise that this spatial arrangement in the visual-
isation plane reflects the similarity of order relations among
solutions, rather than their spatial configuration in objective
space. Nonetheless, as the colouring by best objective shows
in Fig. 14(b), visualisation by dominance distance tends to
group solutions that are close in objective space.

Here 54.3% of the variance in the K-dimensional em-
bedding is retained in the 2-dimensional projection onto the
plane. Projection onto the third eigenvector of F captures
an additional 5.5%, but visualisation and interpretation of
the three-dimensional representation is more cumbersome.
One avenue that might be explored to further reduce the
dimensionality is to use the Isomap [71] or similar nonlinear
dimension reduction methods to look for non-linear manifolds
in the data.

VII. CONCLUSION

We have presented a variety of methods for visualising the
many-objective mutually non-dominating sets being produced
by current multi- and many-objective evolutionary algorithms.

Heatmaps are a standard, well-understood visualisation
method used in many areas. Here we have shown how their
interpretability may be greatly enhanced by spectral seriation
of both the objectives and the solutions in order to place
similar objectives and similar solutions together. Seriation
in parameter space facilitates understanding of the effect
of decision variables on solutions. A straightforward multi-
objective evolutionary algorithm gives small improvements
over spectral seriation and suggests that in many cases the
convex combinations of the objective and parameter space
similarity matrices will yield orderings close to the seriations
found by the multi-objective evolutionary algorithm, which
will be important for using the method to monitor the progress
of optimisations.

Throughout this paper we have emphasised the use of
ranks rather than the raw objective values themselves. Use
of rank coordinates captures the dominance relations between
solutions and removes unknown relative scaling information in
a natural way. It also means the visualisation produced is much
less fragile to the insertion or removal of an individual because
the net effect is to vary the range of the ranks by one rather
than the potentially large range and scaling shifts with raw



19

values. Furthermore the relative order of a ranked solution is
only affected at the insertion point, unless it is directly adjacent
to the new solution or removed solution, its neighbours will
be unchanged, and the largest rank shift any solution will
experience on an objective is one. That said, we point out that
if the solutions all have nearly equal values, ranking magnifies
the small differences between them; in this case it will be
important to ensure that the differences are significant. As a
by-product ranking also performs histogram equalisation of
the objectives so that the full colour scale is used. Use of
ranks leads naturally to measures such as Spearman’s footrule
and Kendall’s τ for measuring the similarity of objectives; we
prefer Spearman’s footrule for its computational simplicity and
ease of interpretation.

Two planar visualisation methods of the solutions were
presented. RadViz, exploiting interpretations of barycentric
coordinates in objective space and the visualisation plane,
provides an intuitive visualisation of the objective locations,
and places solutions in relation to them. With many objectives
the information compression that must occur to map the
solutions onto the interior of a polygon is severe and can lead
to potentially confusing placement of the solutions. However,
the relationship between solutions and objectives is often
easier to comprehend than in other point-based representations.

The introduction of the novel measure of solution similarity
based on order relations with other solutions in the set permits
an embedding of the solution set in Euclidean space. Standard
linear and non-linear dimension reduction methods can then be
used to visualise the solutions in two or three dimensions. We
emphasise that the dominance distance measures how similarly
two solutions relate to the rest of the set and thus provides a
key to further analysis. The dominance distance can be used
to cluster solutions and, in sets containing individuals that
dominate other individuals, it identifies an axis describing the
Pareto ranking structure [66]. Current work is exploring its use
for identifying structure, such as outliers, within the solution
set.

Visualising many-objective solutions in two or three dimen-
sions inevitably necessitates a loss of information and it is
likely particular methods or combinations of them will be more
effective for particular problems; indeed it is very unlikely
that a single method will work well for all problems. The
methods presented here are designed to put a suite of tools at
the many-objective investigator’s disposal. Spectral seriation
and the planar visualisation methods rely on linear algebra
and matrix eigendecomposition. They are thus computationally
cheap, especially in comparison with the computational effort
required to obtain the solutions, and are sufficiently fast to be
incorporated in interactive tools.

In this paper we have discussed the visualisation of static
populations and important future work will be to develop
methods for the effective visualisation of changing popula-
tions as an optimisation evolves. As a first step the methods
presented here are generally cheap enough to be recomputed
afresh each time the population changes. Also, small changes
in the population produce small changes in the visualisation
and both the RadViz and dominance distance methods can
straightforwardly incorporate new solutions that were not used

in determining the original visualisation. However, additional
work is required on effective dynamic visualisation methods
that link the temporal evolution of individuals.

Finally, we point out that although these visualisations may
aid understanding of the global structure of the solution set,
work remains to be done on characterising the local structure,
for example: where are the “knees” in many-objective Pareto
fronts?

REFERENCES

[1] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary Many-
objective Optimization: A Short Review,” in Proceedings of the IEEE
Congress on Evolutionary Computation, June 2008, pp. 2419–2426.

[2] C. M. Fonseca and P. J. Fleming, “Genetic Algorithms for Multiobjective
Optimization: Formulation, Discussion and Generalization,” in Pro-
ceedings of the Fifth International Conference on Genetic Algorithms.
Morgan Kauffman, 1993, pp. 416–423.

[3] A. Pryke, S. Mostaghim, and A. Nazemi, “Heatmap Visualization of
Population Based Multi Objective Algorithms,” in Proceedings of the 4th
International Conference on Evolutionary Multi-criterion Optimization.
Springer-Verlag, 2007, pp. 361–375.

[4] I. Jolliffe, Principal Component Analysis. Springer, 2002.
[5] D. Lowe and M. E. Tipping, “Neuroscale: Novel Topographic Feature

Extraction Using RBF Networks,” in Proceedings of Advances in Neural
Information Processing Systems 9, ser. NIPS’96, 1996, pp. 543–549.

[6] J. E. Fieldsend and R. M. Everson, “Visualisation of Multi-class ROC
Surfaces,” in Proceedings of the ICML 2005 Workshop on ROC Analysis
in Machine Learning, 2005, pp. 49–56.

[7] D. J. Walker, R. M. Everson, and J. E. Fieldsend, “Visualisation and
Ordering of Many-objective Populations,” in Proceedings of the IEEE
Congress on Evolutionary Computation, July 2010, pp. 3664–3671.

[8] T. Kohonen, Self-organising Maps. Springer, 1995.
[9] P. Hoffman, G. Grinstein, K. Marx, I. Grosse, and E. Stanley, “DNA

Visual and Analytic Data Mining,” in VIS’97: Proceedings of the 9th
Conference on Visualization. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1997, pp. 437–441.

[10] E. J. Hughes, “Radar waveform optimisation as a many-objective appli-
cation benchmark,” in Proceedings of the 4th International Conference
on Evolutionary Multi-criterion Optimization. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 700–714.

[11] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable Multi-
Objective Optimization Test Problems,” in Proceedings of the IEEE
Congress on Evolutionary Computation, vol. 1, May 2002, pp. 825–
830.

[12] S. Huband, L. Barone, L. While, and P. Hingston, “A Scalable Multi-
objective Test Problem Toolkit,” in Proceedings of the 3rd International
Conference on Evolutionary Multi-criterion Optimization, C. A. Coello
Coello, A. Hernández Aguirre, and E. Zitzler, Eds. Guanajuato, México:
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axiomatique d’une classe d’espaces distanciés vectoriellement applicable
sur l’espace de Hilbert,” Annals of Mathematics, vol. 38, pp. 724–732,
1935.

[68] J. Gower, “Euclidean Distance Geometry,” Math. Sci., vol. 1, pp. 1–14,
1985.

[69] J. Kruskal, “Multidimensional Scaling by Optimizing Goodness-of-Fit
to a Nonmetric Hypothesis,” Psychometrica, vol. 29, pp. 1–27, 1964.

[70] M. Garza-Fabre, G. Toscano-Pulido, and C. Coello, “Two Novel Ap-
proaches for Many-objective Optimization,” in Proceedings of the IEEE
Congress on Evolutionary Computation, July 2010, pp. 4480–4487.

[71] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A Global Geometric
Framework for Nonlinear Dimensionality Reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, 2000.



21

David Walker (S’10) graduated with a first class
honours degree in Computer Science from the Uni-
versity of Exeter in 2007. Since late 2008 he has
been studying for a PhD in Computer Science at
Exeter. His research involves the visualisation and
understanding of many-objective populations. Other
current research interests are novel applications of
evolutionary algorithms and the identification of
preference information in data.

Richard Everson graduated with a degree in Natural
Sciences (Physics and Theoretical Physics) from
Cambridge University in 1983 and a PhD in Applied
Mathematics from Leeds University in 1988. He
worked at Brown and Yale Universities on fluid me-
chanics and data analysis problems until moving to
Rockefeller University, New York to work on optical
imaging and modelling of the visual cortex. After
working at Imperial College, London, he joined the
Computer Science department at Exeter University
where he is now an Associate Professor of Machine

Learning. Current research interests are in statistical pattern recognition, multi-
objective optimisation and the links between them.

Jonathan Fieldsend (S’00-M’02) received the B.A.
degree (with honours) in Economics from the Uni-
versity of Durham in 1998, the M.Sc. degree in
Computational Intelligence from the University of
Plymouth in 1999 and the Ph.D. degree in Computer
Science from the University of Exeter in 2003.
Between 2002-2006 Dr Fieldsend was employed
as a Research Fellow in the University of Exeter.
He is now a Lecturer in Computer Science at the
same institution. His current research interests in-
clude multi-objective optimisation, optimisation with

uncertainty, pattern recognition, machine learning and data visualisation. Dr
Fieldsend is a Member of the IEEE Computational Intelligence Society, a
Fellow of the Higher Education Academy, and sits on the South West Branch
of the BCS.


