132 research outputs found

    High-resolution imaging reveals indirect coordination of opposite motors and a role for LIS1 in high-load axonal transport

    Get PDF
    High-resolution particle tracking shows a specific role for the dynein regulatory factor LIS1 in high-load axonal transport of large vesicles but no evidence for mechanical activation of opposite-directed motors

    NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores

    Get PDF
    NudE and NudEL are related proteins that interact with cytoplasmic dynein and LIS1. Their functional relationship and involvement in LIS1 and dynein regulation are not completely understood. We find that NudE and NudEL each localize to mitotic kinetochores before dynein, dynactin, ZW10, and LIS1 and exhibit additional temporal and spatial differences in distribution from the motor protein. Inhibition of NudE and NudEL caused metaphase arrest with misoriented chromosomes and defective microtubule attachment. Dynein and dynactin were both displaced from kinetochores by the injection of an anti-NudE/NudEL antibody. Dynein but not dynactin interacted with NudE surprisingly through the dynein intermediate and light chains but not the motor domain. Together, these results identify a common function for NudE and NudEL in mitotic progression and identify an alternative mechanism for dynein recruitment to and regulation at kinetochores

    Microtubules gate tau condensation to spatially regulate microtubule functions.

    Get PDF
    Tau is an abundant microtubule-associated protein in neurons. Tau aggregation into insoluble fibrils is a hallmark of Alzheimer's disease and other types of dementia1, yet the physiological state of tau molecules within cells remains unclear. Using single-molecule imaging, we directly observe that the microtubule lattice regulates reversible tau self-association, leading to localized, dynamic condensation of tau molecules on the microtubule surface. Tau condensates form selectively permissible barriers, spatially regulating the activity of microtubule-severing enzymes and the movement of molecular motors through their boundaries. We propose that reversible self-association of tau molecules, gated by the microtubule lattice, is an important mechanism of the biological functions of tau, and that oligomerization of tau is a common property shared between the physiological and disease-associated forms of the molecule

    Distinct roles for dynein light intermediate chains in neurogenesis, migration, and terminal somal translocation

    Get PDF
    Cytoplasmic dynein participates in multiple aspects of neocortical development. These include neural progenitor proliferation, morphogenesis, and neuronal migration. The cytoplasmic dynein light intermediate chains (LICs) 1 and 2 are cargo-binding subunits, though their relative roles are not well understood. Here, we used in utero electroporation of shRNAs or LIC functional domains to determine the relative contributions of the two LICs in the developing rat brain. We find that LIC1, through BicD2, is required for apical nuclear migration in neural progenitors. In newborn neurons, we observe specific roles for LIC1 in the multipolar to bipolar transition and glial-guided neuronal migration. In contrast, LIC2 contributes to a novel dynein role in the little-studied mode of migration, terminal somal translocation. Together, our results provide novel insight into the LICs' unique functions during brain development and dynein regulation overall.This project was supported by National Institutes of Health grants HD40182 and GM105536 to R.B. Vallee and the Fundação para Ciência e a Tecnologia MDPhD Scholarship PD/BD/113766/2015 to J.C. Gonçalves. During the final year, T.J. Dan-tas was supported by the Porto Neurosciences and Neurologic Disease Research Initiative at Instituto de Investigação e Inovação em Saúde (Norte-01-0145-FED ER-000008

    An Approach to Enhance the Conservation-Compatibility of Solar Energy Development

    Get PDF
    The rapid pace of climate change poses a major threat to biodiversity. Utility-scale renewable energy development (>1 MW capacity) is a key strategy to reduce greenhouse gas emissions, but development of those facilities also can have adverse effects on biodiversity. Here, we examine the synergy between renewable energy generation goals and those for biodiversity conservation in the 13 M ha Mojave Desert of the southwestern USA. We integrated spatial data on biodiversity conservation value, solar energy potential, and land surface slope angle (a key determinant of development feasibility) and found there to be sufficient area to meet renewable energy goals without developing on lands of relatively high conservation value. Indeed, we found nearly 200,000 ha of lower conservation value land below the most restrictive slope angle (<1%); that area could meet the state of California’s current 33% renewable energy goal 1.8 times over. We found over 740,000 ha below the highest slope angle (<5%) – an area that can meet California’s renewable energy goal seven times over. Our analysis also suggests that the supply of high quality habitat on private land may be insufficient to mitigate impacts from future solar projects, so enhancing public land management may need to be considered among the options to offset such impacts. Using the approach presented here, planners could reduce development impacts on areas of higher conservation value, and so reduce trade-offs between converting to a green energy economy and conserving biodiversity

    Update for the practicing pathologist: The International Consultation On Urologic Disease-European association of urology consultation on bladder cancer

    Get PDF
    The International Consultations on Urological Diseases are international consensus meetings, supported by the World Health Organization and the Union Internationale Contre le Cancer, which have occurred since 1981. Each consultation has the goal of convening experts to review data and provide evidence-based recommendations to improve practice. In 2012, the selected subject was bladder cancer, a disease which remains a major public health problem with little improvement in many years. The proceedings of the 2nd International Consultation on Bladder Cancer, which included a 'Pathology of Bladder Cancer Work Group,' have recently been published; herein, we provide a summary of developments and consensus relevant to the practicing pathologist. Although the published proceedings have tackled a comprehensive set of issues regarding the pathology of bladder cancer, this update summarizes the recommendations regarding selected issues for the practicing pathologist. These include guidelines for classification and grading of urothelial neoplasia, with particular emphasis on the approach to inverted lesions, the handling of incipient papillary lesions frequently seen during surveillance of bladder cancer patients, descriptions of newer variants, and terminology for urine cytology reporting

    The human cytomegalovirus ul11 protein interacts with the receptor tyrosine phosphatase cd45, resulting in functional paralysis of t cells

    Get PDF
    Human cytomegalovirus (CMV) exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR) is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV
    corecore