15 research outputs found

    Recombinant cell bioassays for the detection of (gluco)corticosteroids and endocrine-disrupting potencies of several environmental PCB contaminants

    Get PDF
    Sensitive and robust bioassays for glucocorticoids are very useful for the pharmaceutical industry, environmental scientists and veterinary control. Here, a recombinant yeast cell was constructed that expresses the human glucocorticoid receptor alpha and a green fluorescent reporter protein in response to glucocorticoids. Both the receptor construct and the reporter construct were stably integrated into the yeast genome. The correct and specific functioning of this yeast glucocorticoid bioassay was studied by exposures to cortisol and other related compounds and critically compared to a GR-CALUX bioassay based on a human bone cell. Although less sensitive, the new yeast glucocorticoid bioassay showed sensitivity towards all (gluco)corticoids tested, with the following order in relative potencies: budesonide >> corticosterone > dexamethasone > cortisol = betamethasone > prednisolone > aldosterone. Hormone representatives for other hormone nuclear receptors, like 17β-estradiol for the oestrogen receptor, 5α-dihydrotestosterone for the androgen receptor and progesterone for the progesterone receptor, showed no clear agonistic responses, whilst some polychlorinated biphenyls were clearly able to interfere with the GR activity

    Bioavailability and biodistribution of differently charged polystyrene nanoparticles upon oral exposure in rats

    Get PDF
    The likelihood of oral exposure to nanoparticles (NPs) is increasing, and it is necessary to evaluate the oral bioavailability of NPs. In vitro approaches could help reducing animal studies, but validation against in vivo studies is essential. Previously, we assessed the translocation of 50 nm polystyrene NPs of different charges (neutral, positive and negative) using a Caco-2/HT29-MTX in vitro intestinal translocation model. The NPs translocated in a surface charge-dependent manner. The present study aimed to validate this in vitro intestinal model by an in vivo study. For this, rats were orally exposed to a single dose of these polystyrene NPs and the uptake in organs was determined. A negatively charged NP was taken up more than other NPs, with the highest amounts in kidney (37.4 µg/g tissue), heart (52.8 µg/g tissue), stomach wall (98.3 µg/g tissue) and small intestinal wall (94.4 µg/g tissue). This partly confirms our in vitro findings, where the same NPs translocated to the highest extent. The estimated bioavailability of different types of NPs ranged from 0.2 to 1.7 % in vivo, which was much lower than in vitro (1.6–12.3 %). Therefore, the integrated in vitro model cannot be used for a direct prediction of the bioavailability of orally administered NPs. However, the model can be used for prioritizing NPs before further in vivo testing for risk assessment. © 2015, The Author(s)

    The European union’s 2010 target: Putting rare species in focus

    Get PDF
    P. 167-185The European Union has adopted the ambitious target of halting the loss of biodiversity by 2010. Several indicators have been proposed to assess progress towards the 2010 target, two of them addressing directly the issue of species decline. In Europe, the Fauna Europaea database gives an insight into the patterns of distribution of a total dataset of 130,000 terrestrial and freshwater species without taxonomic bias, and provide a unique opportunity to assess the feasibility of the 2010 target. It shows that the vast majority of European species are rare, in the sense that they have a restricted range. Considering this, the paper discusses whether the 2010 target indicators really cover the species most at risk of extinction. The analysis of a list of 62 globally extinct European taxa shows that most contemporary extinctions have affected narrow-range taxa or taxa with strict ecological requirements. Indeed, most European species listed as threatened in the IUCN Red List are narrow-range species. Conversely, there are as many wide-range species as narrow-range endemics in the list of protected species in Europe (Bird and Habitat Directives). The subset of biodiversity captured by the 2010 target indicators should be representative of the whole biodiversity in terms of patterns of distribution and abundance. Indicators should not overlook a core characteristic of biodiversity, i.e. the large number of narrow-range species and their intrinsic vulnerability. With ill-selected indicator species, the extinction of narrowrange endemics would go unnoticedS

    Investigating orphan cytochromes P450 from Mycobacterium tuberculosis : the search for potential drug targets

    Get PDF
    Tuberculosis (TB) is a disease that the World Health Organisation (WHO) regards as a global pandemic. There is a great need for new drugs to combat this threat. Drug resistant strains of the causative agent, Mycobacterium tuberculosis (Mtb), have increased the urgency of this quest for novel anti-mycobacterial medicines. Publication of the Mtb genome sequence revealed a large number of cytochrome P450 (CYP) enzymes [Cole, S. T. et al. 1998]. These mono-oxygenase enzymes have been studied for many years and are responsible for metabolic functions in every kingdom of life. Research on the Mtb P450s to date has highlighted several of them as having critcal roles within the organism. CYP121 and CYP128 have been implicated as essential through gene knockout studies. It has been demonstrated that CYP125 is not essential for viability. However, it is part of a gene cluster highly important for Mtb infectivity and virulence. Due to the prospective importance of P450s to Mtb, this group of enzymes is under investigation as a source of novel drug targets. CYP142 was discovered as a potential drug target after it was located to a gene cluster involved in cholesterol catabolism during Mtb dormancy. As part of this PhD project, it was demonstrated that CYP142 performs an almost identical role to that reported for CYP125. These enzymes both perform C27 hydroxylation and carboxylation of the cholesterol side chain. However, variations in the level of oxidation have been identified, dependent upon the redox system with which these P450s are associated. A crystal structure of CYP142 showing high similarity in active site architecture to CYP125 supports the physiological role of CYP142 in cholesterol catabolism. Combining this with in vitro data which demonstrates that CYP142 possesses high affinity for a range of azole anti-fungal agents [Ahmad, Z. et al. 2005, 2006] supports the suggestion that it is a candidate target for the next generation of anti-mycobacterial drugs. CYP144 was highlighted as being important during the latent phase of Mtb growth, a phase that is not targeted by any of the current antimycobacterials. Work performed as part of this PhD has shown that many characteristics of CYP144 are highly comparable to those reported for other MtbP450s. CYP144 shows high affinity and specificity towards many azole molecules. Econazole, clotrimazole and miconazole have repeatedly been shown to bind to MtbP450s, including CYP144 and CYP142, with high affinity and are excellent potential candidates as novel anti-mycobacterial agents. An N-terminally truncated form of CYP144, CYP144-T, has been investigated in the pursuit of a CYP144 crystal structure. It is hoped that this will enable the elucidation of a physiological role for CYP144. Both CYP142 and CYP144 have demonstrated biochemical and biophysical characteristics that contribute to our knowledge of P450 enzymes. This PhD has established that CYP142 exhibits an equilibrium between P450 and P420 species in its CO-bound, ferrous form. A conversion from P420, and stabilisation of P450, upon substrate binding was also demonstrated. CYP144 displays unusual azole coordination characteristics when examined by EPR and removal of the CYP144 gene from Mtb increased sensitivity of the strain to clotrimazole. Studies of these enzymes has advanced knowledge of P450 and Mtb redox chemistry, established roles for the MtbP450 cohort and identified the potential of anti-mycobacterial drugs and associated targets.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport

    No full text
    Background Upon ingestion, nanoparticles can interact with the intestinal epithelial barrier potentially resulting in systemic uptake of nanoparticles. Nanoparticle properties have been described to influence the protein corona formation and subsequent cellular adhesion, uptake and transport. Here, we aimed to study the effects of nanoparticle size and surface chemistry on the protein corona formation and subsequent cellular adhesion, uptake and transport. Caco-2 intestinal cells, were exposed to negatively charged polystyrene nanoparticles (PSNPs) (50 and 200 nm), functionalized with sulfone or carboxyl groups, at nine nominal concentrations (15–250 μg/ml) for 10 up to 120 min. The protein coronas were analysed by LC–MS/MS. Results Subtle differences in the protein composition of the two PSNPs with different surface chemistry were noted. High-content imaging analysis demonstrated that sulfone PSNPs were associated with the cells to a significantly higher extent than the other PSNPs. The apparent cellular adhesion and uptake of 200 nm PSNPs was not significantly increased compared to 50 nm PSNPs with the same surface charge and chemistry. Surface chemistry outweighs the impact of size on the observed PSNP cellular associations. Also transport of the sulfone PSNPs through the monolayer of cells was significantly higher than that of carboxyl PSNPs. Conclusions The results suggest that the composition of the protein corona and the PSNP surface chemistry influences cellular adhesion, uptake and monolayer transport, which might be predictive of the intestinal transport potency of NPs

    Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport

    No full text
    Background: Upon ingestion, nanoparticles can interact with the intestinal epithelial barrier potentially resulting in systemic uptake of nanoparticles. Nanoparticle properties have been described to influence the protein corona formation and subsequent cellular adhesion, uptake and transport. Here, we aimed to study the effects of nanoparticle size and surface chemistry on the protein corona formation and subsequent cellular adhesion, uptake and transport. Caco-2 intestinal cells, were exposed to negatively charged polystyrene nanoparticles (PSNPs) (50 and 200 nm), functionalized with sulfone or carboxyl groups, at nine nominal concentrations (15-250 ÎĽg/ml) for 10 up to 120 min. The protein coronas were analysed by LC-MS/MS. Results: Subtle differences in the protein composition of the two PSNPs with different surface chemistry were noted. High-content imaging analysis demonstrated that sulfone PSNPs were associated with the cells to a significantly higher extent than the other PSNPs. The apparent cellular adhesion and uptake of 200 nm PSNPs was not significantly increased compared to 50 nm PSNPs with the same surface charge and chemistry. Surface chemistry outweighs the impact of size on the observed PSNP cellular associations. Also transport of the sulfone PSNPs through the monolayer of cells was significantly higher than that of carboxyl PSNPs. Conclusions: The results suggest that the composition of the protein corona and the PSNP surface chemistry influences cellular adhesion, uptake and monolayer transport, which might be predictive of the intestinal transport potency of NPs.</p

    <i>In vitro</i> gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an <i>in vitro</i> intestinal co-culture model

    No full text
    <div><p></p><p>The conditions of the gastrointestinal tract may change the physicochemical properties of nanoparticles (NPs) and therewith the bioavailability of orally taken NPs. Therefore, we assessed the impact of <i>in vitro</i> gastrointestinal digestion on the protein corona of polystyrene NPs (PS-NPs) and their subsequent translocation across an <i>in vitro</i> intestinal barrier. A co-culture of intestinal Caco-2 and HT29-MTX cells was exposed to 50 nm PS-NPs of different charges (positive and negative) in two forms: pristine and digested in an <i>in vitro</i> gastrointestinal digestion model. <i>In vitro</i> digestion significantly increased the translocation of all, except the “neutral”, PS-NPs. Upon <i>in vitro</i> digestion, translocation was 4-fold higher for positively charged NPs and 80- and 1.7-fold higher for two types of negatively charged NPs. Digestion significantly reduced the amount of protein in the corona of three out of four types of NPs. This reduction of proteins was 4.8-fold for “neutral”, 3.5-fold for positively charged and 1.8-fold for one type of negatively charged PS-NPs. <i>In vitro</i> digestion also affected the composition of the protein corona of PS-NPs by decreasing the presence of higher molecular weight proteins and shifting the protein content of the corona to low molecular weight proteins. These findings are the first to report that <i>in vitro</i> gastrointestinal digestion significantly affects the protein corona and significantly increases the <i>in vitro</i> translocation of differently charged PS-NPs. These findings stress the importance of including the <i>in vitro</i> digestion in future <i>in vitro</i> intestinal translocation screening studies for risk assessment of orally taken NPs.</p></div
    corecore