25 research outputs found

    The calcareous brown alga Padina pavonica in southern Britain: population change and tenacity over 300 years

    Get PDF
    Understanding long-term persistence and variability in species populations can help to predict future survival, growth and distribution; however, sustained observations are exceedingly rare. We examine and interpret a remarkable record of the calcareous brown alga Padina pavonica (Phaeophyceae) at its northern limit on the south coast of England (50°N, 1–3°W) from 1680 to 2014, which is probably the longest compilation and review of any marine algal species. Over this period, which extends from the middle of the Little Ice Age to the present, there has been considerable variability in temperature and storminess. We identified a significant number of site extinctions in the second half of the nineteenth century, which coincided with cooler conditions and stormier weather. To interpret thesechanges, we measured recruitment, growth and production of tetraspores at sheltered and exposed sites in 2012–2014, years which had low and high spring temperatures. Potential spore production was greater at the sheltered site due to a longer growing period and survival of larger fronds. Delayed growth in the cooler spring resulted in smaller fronds and lower potential production of tetraspores by early summer. Yet in the warmer year, rapid initial growth caused higher sensitivity to damage and dislodgement by summer storms, which also limited potential spore production. Antagonistic responses to multiple stressors and disturbances make future predictions of survival and distribution difficult. Fronds of Padina pavonica are sensitive to both temperature and physical disturbances, yet vegetative perennation appears to have enabled population persistence and explained the longevity of remaining populations

    Especiação e seus mecanismos: histórico conceitual e avanços recentes

    Full text link

    Chemical and Biological Impacts of Ocean Acidification along the West Coast of North America

    No full text
    The continental shelf region off the west coast of North America is seasonally exposed to water with a low aragonite saturation state by coastal upwelling of CO2-rich waters. To date, the spatial and temporal distribution of anthropogenic CO2 (Canth) within the CO2-rich waters is largely unknown. Here we adapt the multiple linear regression approach to utilize the GO-SHIP Repeat Hydrography data from the northeast Pacific to establish an annually updated relationship between Canth and potential density. This relationship was then used with the NOAA Ocean Acidification Program West Coast Ocean Acidification (WCOA) cruise data sets from 2007, 2011, 2012, and 2013 to determine the spatial variations of Canth in the upwelled water. Our results show large spatial differences in Canth in surface waters along the coast, with the lowest values (37–55 μmol kg−1) in strong upwelling regions off southern Oregon and northern California and higher values (51–63 μmol kg−1) to the north and south of this region. Coastal dissolved inorganic carbon concentrations are also elevated due to a natural remineralized component (Cbio), which represents carbon accumulated through net respiration in the seawater that has not yet degassed to the atmosphere. Average surface Canth is almost twice the surface remineralized component. In contrast, Canth is only about one third and one fifth of the remineralized component at 50 m and 100 m depth, respectively. Uptake of Canth has caused the aragonite saturation horizon to shoal by approximately 30–50 m since the preindustrial period so that undersaturated waters are well within the regions of the continental shelf that affect the shell dissolution of living pteropods. Our data show that the most severe biological impacts occur in the nearshore waters, where corrosive waters are closest to the surface. Since the pre-industrial times, pteropod shell dissolution has, on average, increased approximately 19–26% in both nearshore and offshore waters
    corecore