12,830 research outputs found

    Coherent spin control by electrical manipulation of the magnetic anisotropy

    Get PDF
    High-spin paramagnetic manganese defects in polar piezoelectric zinc oxide exhibit a simple almost axial anisotropy and phase coherence times of the order of a millisecond at low temperatures. The anisotropy energy is tunable using an externally applied electric field. This can be used to control electrically the phase of spin superpositions and to drive spin transitions with resonant microwave electric fields

    Fiber optic frequency transfer link

    Get PDF
    A reference frequency distribution system is disclosed for transmitting a reference frequency from a reference unit to a remote unit while keeping the reference frequency at the reference unit and the remote unit in phase. A fiber optic cable connects the reference unit to the remote unit. A frequency source at the reference unit produces a reference frequency having an adjustable phase. A fiber optic transmitter at the reference unit modulates a light beam with the reference frequency and transmits the light beam into the fiber optic cable. A 50/50 reflector at the remote unit reflects a first portion of the light beam from the reference unit back into the fiber optic cable to the reference unit. A first fiber optic receiver disposed at the remote unit receives a second portion of the light beam and demodulates the reference frequency to be used at the remote unit. A second fiber optic receiver disposed at the reference unit receives the first portion of the light beam and demodulates a reference frequency component. A phase conjugator is connected to the frequency source for comparing the phase of the reference frequency component to the phase of the reference frequency modulating the light beam being transmitted from the reference unit to maintain a conjugate (anti-symmetric) relationship between the reference frequency component and the reference frequency modulating the light beam where virtually no phase difference exists between the phase of the reference frequency component and the phase of the reference frequency modulating the light beam

    Analysis of Thermal-Protection Systems for Space-Vehicle Cryogenic-Propellant Tanks

    Get PDF
    Analytical techniques are presented that permit the calculation of heat-transfer rates with various thermal-protection systems for liquid-cryogenic-propellant tanks subjected to on-board, solar, and planetary heat fluxes. The thermal-protection systems considered include using closely spaced reflective surfaces (foils) and widely spaced reflective surfaces (shadow shields), insulation, arrangement of vehicle components, orientation with respect to radiant heating sources, and coatings for the control of solar absorptivity. The effectiveness of these thermal-protection systems in reducing propellant heating is shown both for ideal heat-transfer models and for a simplified hydrogen-oxygen terminal stage on a Mars mission. The proper orientation of a space-vehicle cryogenic tank with respect to the Sun is one of the more beneficial methods of reducing the heating effect of solar flux. Shadow shields can be extremely effective in reducing the propellant heating due to both solar and on-board fluxes. However, low-altitude planet orbits can result in high propellant heating rates due to planetary radiation reflected from the shields. For low-altitude orbits of more than a few days, foils appear to be desirable for all cryogenic-tank surfaces. Foils are also effective in reducing the on-board heating. A choice of shadow shields or foils cannot be made until a particular vehicle and a particular mission are chosen. The thermal conductivity of insulation materials would have to be lower by about two orders of magnitude with no increase in density before insulation could compete with reflective surfaces for use in long-duration thermal protection of cryogenic tanks in space. To demonstrate the application of the methods devised, thermal-protection systems are developed for a hydrogen-oxygen terminal stage for typical Mars missions

    The Impact of Vein Mechanical Compliance on Arteriovenous Fistula Outcomes

    Get PDF
    © 2016 Elsevier Inc. Background Arteriovenous fistulae (AVFs) are the preferred access for hemodialysis but suffer a high early failure rate. The aim of this study was to determine how venous distensibility, as measured in vitro, relates to early outcomes of AVF formed with the sampled vein. Methods Ethical approval was obtained for all aspects of this study. During AVF formation a circumferential segment of the target vein was sampled. Mechanical stress testing of the venous segments was undertaken using a dynamic mechanical analyzer, with progressive stress loading at 2 N/min to a maximum of 10 N or until sample disruption. Stress-strain curves were obtained for vein samples and Young's modulus (YM) calculated. Duplex assessment of the fistulae was undertaken at 30 days. Results Thirty patients consented to participate with 29 samples obtained for analysis. Statistical comparison of YM demonstrated no relationship with common cardiovascular risk factors or dialysis status. Subject age greater than 65 was the only patient factor which showed a significant difference in YM (P = 0.05). Furthermore, a negative correlation was confirmed between age and YM (Pearson's r = -0.465, P < 0.05). Nine of the 29 subjects suffered an early AVF failure. Mann-Whitney U testing for differences in distribution reported that YM was significantly higher in those fistulas which failed (P < 0.005). Conclusions Reduced venous compliance appears to result in higher failure rates of AVFs. With the advancement of clinical tools such as speckle tracing ultrasound identification of vessel compliance in vivo may produce valuable additional information for clinicians planning AVF surgery

    Transcendental Thermodynamics

    Get PDF
    Thermodynamics is often viewed as a narrow, introspective discipline, trapped by its origins in the 18th and 19th centuries. By dramatic contrast, we show that the Fourth Law of Thermodynamics provides explanations and interpretations of all natural events, extending across artificial boundaries of tradition- al academic disciplines. The Fourth Law of Thermodynamics states that far-from-equilibrium systems increase entropy at the maximum rate available to them. This broadly inclusive paradigm applies to systems from molecules, to organisms, to the biosphere. The Fourth Law is the Law of Evolution. All systems that communicate with their environment exhibit self-organization and self-optimization, enabling the emergence and the evolution of life as a sustained optimization of entropy increase

    The Practical Application and Innovation of Cleaning Technology for Heat Exchangers

    Get PDF
    The fouling of heat exchangers not only has a negative impact on heat transfer efficiency but also may restrict the output or production capacity of the facility. Given the cooling medium and the process, heat exchangers may be lightly fouled with organic deposits or may be severely blocked from hardened process chemicals. The probability of success in cleaning the heat exchanger is dependent on the selection of the appropriate cleaning technology under the specific fouling conditions. Early identification of fouling characteristics and a fundamental knowledge of cleaning system capabilities are essential in determining the most effective cleaning technology and the frequency of cleaning required. Unique circumstances may require innovative solutions. State-of-the-art cleaning technologies for shell and tube heat exchangers and air-cooled heat exchangers are introduced. The practical application and innovation of cleaning technology is discussed. Methods for effective removal of various deposit types are presented

    Testing Binary Population Synthesis Models with Hot Subdwarfs

    Full text link
    Models of binary star interactions have been successful in explaining the origin of field hot subdwarf (sdB) stars in short period systems, but longer-period systems that formed via Roche-lobe overflow (RLOF) mass transfer from the present sdB to its companion have received less attention. We map sets of initial binaries into present-day binaries that include sdBs and main-sequence stars, distinguishing "observable" sdBs from "hidden" ones. We aim to find out whether (1) the existing catalogues of sdBs are sufficiently fair samples of all the kinds of sdB binaries that theory predicts; or instead whether (2) large predicted hidden populations mandate the construction of new catalogues, perhaps using wide-field imaging surveys such as 2MASS, SDSS, and Galex. We also report on a pilot study to identify hidden subdwarfs, using 2MASS and GALEX data.Comment: 3 pages with 2 figures. Uses AIP style files. To appear in Future Directions in Ultraviolet Astronomy, ed. Michael E. VanSteenberg (AIP Conf Proc

    Tarnished: Toxic Leadership in the U.S. Military

    Get PDF
    corecore