7,900 research outputs found
Type 1 diabetes
Type 1 diabetes is a chronic autoimmune disease characterised by insulin deficiency and resultant hyperglycaemia. Knowledge of type 1 diabetes has rapidly increased over the past 25 years, resulting in a broad understanding about many aspects of the disease, including its genetics, epidemiology, immune and β-cell phenotypes, and disease burden. Interventions to preserve β cells have been tested, and several methods to improve clinical disease management have been assessed. However, wide gaps still exist in our understanding of type 1 diabetes and our ability to standardise clinical care and decrease disease-associated complications and burden. This Seminar gives an overview of the current understanding of the disease and potential future directions for research and care
Urban Air Mobility Fleet Manager Gap Analysis and System Design
NASA's Urban Air Mobility (UAM) Sub-Project is engaged in research to support the introduction of air taxis into the National Airspace System. Such operations will require a range of communication, navigation, and surveillance systems. Air vehicles for UAM are under development and will initially have human pilots. Separation from other aircraft, obstacles, and weather may be a pilot responsibility or provided by an operator's ground-based systems. Eventually, air taxis may be flown from the ground or fly autonomously. There will be a need for dispatch services for UAM. This report presents a gap analysis, data and capability requirements, and workstation design concepts for the UAM dispatcher or Fleet Manager (FM) position
Effective anisotropies and energy barriers of magnetic nanoparticles with Néel surface anisotropy
Magnetic nanoparticles with Néel surface anisotropy, different internal structures, surface arrangements, and elongation are modeled as many-spin systems. The results suggest that the energy of many-spin nanoparticles cut from cubic lattices can be represented by an effective one-spin potential containing uniaxial and cubic anisotropies. It is shown that the values and signs of the corresponding constants depend strongly on the particle's surface arrangement, internal structure, and shape. Particles cut from a simple cubic lattice have the opposite sign of the effective cubic term, as compared to particles cut from the face-centered cubic lattice. Furthermore, other remarkable phenomena are observed in nanoparticles with relatively strong surface effects. (i) In elongated particles surface effects can change the sign of the uniaxial anisotropy. (ii) In symmetric particles (spherical and truncated octahedral) with cubic core anisotropy surface effects can change the sing of the latter. We also show that the competition between the core and surface anisotropies leads to a new energy that contributes to both the second- and fourth-order effective anisotropies. We evaluate energy barriers ΔE as functions of the strength of the surface anisotropy and the particle size. The results are analyzed with the help of the effective one-spin potential, which allows us to assess the consistency of the widely used formula ΔE/V= K∞ +6 Ks /D, where K∞ is the core anisotropy constant, Ks is a phenomenological constant related to surface anisotropy, and D is the particle's diameter. We show that the energy barriers are consistent with this formula only for elongated particles for which the surface contribution to the effective uniaxial anisotropy scales with the surface and is linear in the constant of the Néel surface anisotropy. © 2007 The American Physical Society
Improved Semileptonic Form Factor Calculations in Lattice QCD
We investigate the computational efficiency of two stochastic based
alternatives to the Sequential Propagator Method used in Lattice QCD
calculations of heavy-light semileptonic form factors. In the first method, we
replace the sequential propagator, which couples the calculation of two of the
three propagators required for the calculation, with a stochastic propagator so
that the calculations of all three propagators are independent. This method is
more flexible than the Sequential Propagator Method but introduces stochastic
noise. We study the noise to determine when this method becomes competitive
with the Sequential Propagator Method, and find that for any practical
calculation it is competitive with or superior to the Sequential Propagator
Method. We also examine a second stochastic method, the so-called ``one-end
trick", concluding it is relatively inefficient in this context. The
investigation is carried out on two gauge field ensembles, using the
non-perturbatively improved Wilson-Sheikholeslami-Wohlert action with N_f=2
mass-degenerate sea quarks. The two ensembles have similar lattice spacings but
different sea quark masses. We use the first stochastic method to extract
-improved, matched lattice results for the semileptonic form
factors on the ensemble with lighter sea quarks, extracting f_+(0)
The effect of strategic supplementation with trans-10,cis-12 conjugated linoleic acid on the milk production, estrous cycle characteristics, and reproductive performance of lactating dairy cattle
Peer-reviewedThis is the author’s version of a work that was accepted for publication in Journal of Dairy Science. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of Dairy Science, Volume 95, Issue 5, May 2012, Pages 2442-2451: DOI 10.3168/jds.2011-4632The objective was to determine the effects of a protected (lipid-encapsulated) conjugated linoleic acid (LE-CLA) supplement on milk production, estrous cycle characteristics, and reproductive performance in lactating dairy cows on a pasture-based diet. Spring calving dairy cows (n = 409) on a single pasture-based commercial dairy farm were used in a completely randomized block design. Cows were assigned to 1 of 2 dietary supplements [LE-CLA (n = 203) or no supplement (control, n = 206)]. The LE-CLA cows received 51 g/d of a lipid supplement containing 5 g of both trans-10,cis-12 and cis-9,trans-11 CLA from 0 to 60 d in milk. Milk samples were collected 3 times weekly, and each sample was analyzed for progesterone to determine the interval to first ovulation and estrous cycle characteristics. Milk yield and concentrations of fat, protein, and lactose were measured every 2 wk. Cows were inseminated following visual observation of estrus. The breeding season commenced on April 8, 2009 and continued for 16 wk. Transrectal ultrasonography was carried out at 30 to 36 d and 60 to 66 d post-AI to diagnose pregnancy. The LE-CLA treatment resulted in a decrease in milk fat concentration (36.9 ± 0.06 g/kg vs. 30.7 ± 0.06 g/kg for control and LE-CLA, respectively) and yield (0.91 ± 0.02 kg/d vs. 0.84 ± 0.02 kg/d for control and LE-CLA, respectively); however, milk yield was increased by LE-CLA supplementation (24.7 ± 0.7 kg/d vs. 27.2 ± 0.7 kg/d for control and LE-CLA, respectively), resulting in no overall difference in milk energy output. No effect of LE-CLA was observed on any estrous cycle characteristics or measures of reproductive performance. These results support that in pasture-based systems of dairy production, where energy intake limits milk production, energy spared by CLA-induced milk fat depression is partitioned toward increasing milk yield rather than toward body reserves
Effect of supplementation with different fat sources on the mechanisms involved in reproductive performance in lactating dairy cattle
peer reviewedSupplementary fat positively influences reproductive performance in dairy cattle, although the mechanisms involved are not clearly defined. Our objective was to determine the effects of four different fat supplements on follicle development, plasma steroid hormone concentrations and prostaglandin (PG) synthesis in lactating dairy cattle. Forty-eight early lactation Holstein-Friesian cows (21 primiparous, 27 multiparous) were used in a completely randomized block design. Cows were fed the same basal TMR diet and received one of four fat supplements: (i) palmitic acid (18:0 fatty acid; Control), (ii) flaxseed (rich in 18:3 n-3 fatty acid; Flax), (iii) conjugated linoleic acid (a mixture of cis-9, trans-11 and trans-10, cis-12 isomers; CLA), and (iv) fish oil (rich in 20:5 and 22:6 n-3 fatty acids; FO). All lipid supplements were formulated to be isolipidic; palmitic acid was added as necessary to provide a total lipid supplement intake of 500 g/day. Cows were synchronized to be in estrus on Day 15 of dietary treatment. All antral follicles were counted, and dominant follicles, subordinate follicles and corpora lutea were measured daily via transrectal ovarian ultrasonography for one complete estrous cycle. Blood samples were collected daily, and selected samples were analyzed for progesterone, estradiol, insulin-like growth factor-1, insulin, cholesterol and non-esterified fatty acids. Estrus was synchronized a second time, and liver and endometrial biopsies were collected on Day 7 of the estrous cycle. Gene expression was evaluated for a number of genes involved in prostaglandin synthesis (endometrium) and fatty acid uptake and utilization (liver). Fat supplementation had little effect on follicle development. Cows receiving supplementary n-3 fatty acids had lesser plasma progesterone (P4) and smaller corpora lutea than cows receiving the CLA or Control supplements. Effects of fat supplementation on the endometrial expression of genes involved in PG synthesis were minor. Hepatic expression of SREBF1, ASCL1 and FABP1 was reduced by FO supplementation. Reduced plasma P4 in n-3 supplemented cows may lead to a suboptimal uterine environment for embryo development and hence reduced fertility compared to cows receiving the control or CLA supplements
A comparison of dynamical fluctuations of biased diffusion and run-and-tumble dynamics in one dimension
We compare the fluctuations in the velocity and in the fraction of time spent
at a given position for minimal models of a passive and an active particle: an
asymmetric random walker and a run-and-tumble particle in continuous time and
on a 1D lattice. We compute rate functions and effective dynamics conditioned
on large deviations for these observables. While generally different, for a
unique and non-trivial choice of rates (up to a rescaling of time) the velocity
rate functions for the two models become identical, whereas the effective
processes generating the fluctuations remain distinct. This equivalence
coincides with a remarkable parity of the spectra of the processes' generators.
For the occupation-time problem, we show that both the passive and active
particles undergo a prototypical dynamical phase transition when the average
velocity is non-vanishing in the long-time limit.Comment: 27 pages, 10 figure
Exact spectral solution of two interacting run-and-tumble particles on a ring lattice
Exact solutions of interacting random walk models, such as 1D lattice gases,
offer precise insight into the origin of nonequilibrium phenomena. Here, we
study a model of run-and-tumble particles on a ring lattice interacting via
hardcore exclusion. We present the exact solution for one and two particles
using a generating function technique. For two particles, the eigenvectors and
eigenvalues are explicitly expressed using two parameters reminiscent of Bethe
roots, whose numerical values are determined by polynomial equations which we
derive. The spectrum depends in a complicated way on the ratio of direction
reversal rate to lattice jump rate, . For both one and two particles,
the spectrum consists of separate real bands for large , which mix and
become complex-valued for small . At exceptional values of ,
two or more eigenvalues coalesce such that the Markov matrix is
non-diagonalizable. A consequence of this intricate parameter dependence is the
appearance of dynamical transitions: non-analytic minima in the longest
relaxation times as functions of (for a given lattice size).
Exceptional points are theoretically and experimentally relevant in, e.g., open
quantum systems and multichannel scattering. We propose that the phenomenon
should be a ubiquitous feature of classical nonequilibrium models as well, and
of relevance to physical observables in this context.Comment: 29 pages, 7 figures, revised submission to J. Stat. Mec
- …