1,713 research outputs found

    Trajectory generation for the N-trailer problem using Goursat normal form

    Get PDF
    Develops the machinery of exterior differential forms, more particularly the Goursat normal form for a Pfaffian system, for solving nonholonomic motion planning problems, i.e., motion planning for systems with nonintegrable velocity constraints. The authors use this technique to solve the problem of steering a mobile robot with n trailers. The authors present an algorithm for finding a family of transformations which will convert the system of rolling constraints on the wheels of the robot with n trailers into the Goursat canonical form. Two of these transformations are studied in detail. The Goursat normal form for exterior differential systems is dual to the so-called chained-form for vector fields that has been studied previously. Consequently, the authors are able to give the state feedback law and change of coordinates to convert the N-trailer system into chained-form. Three methods for planning trajectories for chained-form systems using sinusoids, piecewise constants, and polynomials as inputs are presented. The motion planning strategy is therefore to first convert the N-trailer system into Goursat form, use this to find the chained-form coordinates, plan a path for the corresponding chained-form system, and then transform the resulting trajectory back into the original coordinates. Simulations and frames of movie animations of the N-trailer system for parallel parking and backing into a loading dock using this strategy are included

    The Recognition of STEMI by Paramedics and the Effect of Computer inTerpretation (RESPECT): a randomised crossover feasibility study

    Get PDF
    Background : The appropriate management of patients with ST-segment elevation myocardial infarction (STEMI) depends on accurate interpretation of the 12-lead ECG by paramedics. Computer interpretation messages on ECGs are often provided, but the effect they exert on paramedics’ decision-making is not known. The objective of this study was to assess the feasibility of using an online assessment tool, and collect pilot data, for a definitive trial to determine the effect of computer interpretation messages on paramedics’ diagnosis of STEMI. Methods : The Recognition of STEMI by Paramedics and the Effect of Computer inTerpretation (RESPECT) feasibility study was a randomised crossover trial using a bespoke, web-based assessment tool. Participants were randomly allocated 12 of 48 ECGs, with an equal mix of correct and incorrect computer interpretation messages, and STEMI and STEMI-mimics. The nature of the responses required a cross-classified multi-level model. Results : 254 paramedics consented into the study, 205 completing the first phase and 150 completing phase two. The adjusted OR for a correct paramedic interpretation, when the computer interpretation was correct (true positive for STEMI or true negative for STEMI-mimic), was 1.80 (95% CI 0.84 to 4.91) and 0.58 (95% CI 0.41 to 0.81) when the computer interpretation was incorrect (false positive for STEMI or false negative for STEMI-mimic). The intraclass correlation coefficient for correct computer interpretations was 0.33 for participants and 0.17 for ECGs, and for incorrect computer interpretations, 0.06 for participants and 0.01 for ECGs. Conclusions : Determining the effect of computer interpretation messages using a web-based assessment tool is feasible, but the design needs to take clustered data into account. Pilot data suggest that computer messages influence paramedic interpretation, improving accuracy when correct and worsening accuracy when incorrect

    Specificity of the Acute Tryptophan and Tyrosine Plus Phenylalanine Depletion and Loading Tests Part II: Normalisation of the Tryptophan and the Tyrosine Plus Phenylalanine to Competing Amino Acid Ratios in a New Control Formulation

    Get PDF
    Current formulations for acute tryptophan (Trp) or tyrosine (Tyr) plus phenylalanine (Phe) depletion and loading cause undesirable decreases in ratios of Trp or Tyr + Phe to competing amino acids (CAA), thus undermining the specificities of these tests. Branched-chain amino acids (BCAA) cause these unintended decreases, and lowering their content in a new balanced control formulation in the present study led to normalization of all ratios. Four groups (n = 12 each) of adults each received one of four 50 g control formulations, with 0% (traditional), 20%, 30%, or 40% less of the BCAA. The free and total [Trp]/[CAA] and [Phe + Tyr]/[BCAA + Trp] ratios all decreased significantly during the first 5 h following the traditional formulation, but were fully normalized by the formulation containing 40% less of the BCAA. We recommend the latter as a balanced control formulation and propose adjustments in the depletion and loading formulations to enhance their specificities for 5-HT and the catecholamines

    The Kepler Light Curves of AGN: A Detailed Analysis

    Full text link
    We present a comprehensive analysis of 21 light curves of Type 1 AGN from the Kepler spacecraft. First, we describe the necessity and development of a customized pipeline for treating Kepler data of stochastically variable sources like AGN. We then present the light curves, power spectral density functions (PSDs), and flux histograms. The light curves display an astonishing variety of behaviors, many of which would not be detected in ground-based studies, including switching between distinct flux levels. Six objects exhibit PSD flattening at characteristic timescales which roughly correlate with black hole mass. These timescales are consistent with orbital timescales or freefall accretion timescales. We check for correlations of variability and high-frequency PSD slope with accretion rate, black hole mass, redshift and luminosity. We find that bolometric luminosity is anticorrelated with both variability and steepness of the PSD slope. We do not find evidence of the linear rms-flux relationships or lognormal flux distributions found in X-ray AGN light curves, indicating that reprocessing is not a significant contributor to optical variability at the 0.1-10% level.Comment: 39 pages including 2 appendices. Accepted for Publication in the Astrophysical Journal, with higher resolution figure

    Specificity of the Acute Tryptophan and Tyrosine Plus Phenylalanine Depletion and Loading Tests I. Review of Biochemical Aspects and Poor Specificity of Current Amino Acid Formulations

    Get PDF
    The acute tryptophan or tyrosine plus phenylalanine depletion and loading tests are powerful tools for studying the roles of serotonin, dopamine and noradrenaline in normal subjects and those with behavioural disorders. The current amino acid formulations for these tests, however, are associated with undesirable decreases in ratios of tryptophan or tyrosine plus phenylalanine to competing amino acids resulting in loss of specificity. This could confound biochemical and behavioural findings. Compositions of current formulations are reviewed, the biochemical principles underpinning the tests are revisited and examples of unintended changes in the above ratios and their impact on monoamine function and behaviour will be demonstrated from data in the literature. The presence of excessive amounts of the 3 branched-chain amino acids Leu, Ile and Val is responsible for these unintended decreases and the consequent loss of specificity. Strategies for enhancing the specificity of the different formulations are proposed

    Effects of Acute Tryptophan Depletion on Three Different Types of Behavioral Impulsivity

    Get PDF
    Introduction: While central nervous system serotonin has been implicated in a variety of problematic impulsive behaviors, biological manipulation of brain serotonin using acute tryptophan depletion for studying changes in impulsive behavior has received little attention. Methods: Using identical treatment conditions, we examined the effects of reduced serotonin synthesis for each of three matched groups using acute tryptophan depletion. Thirty healthy men and women (ages 18–45) were assigned to perform one of three tasks assessing different types of behavioral impulsivity: response initiation, response inhibition, and consequence sensitivity (N = 90). Participants completed two experimental days during which each consumed either a tryptophan-depletion or balanced-placebo amino-acid formulation and completed 5 sessions of their respective tasks at 0.25 h before and 1.5, 4.0, 5.0, and 6.0 h after beverage consumption. Results: During peak effectiveness (5.0 h to 6.0 h following amino-acid consumption), depletion produced selective differences dependent on the type of impulsivity being tested. Specifically, relative to baseline testing (pre-depletion), response initiation impulsivity was significantly increased during the peak effects of depletion. And, when compared to placebo control, both response initiation and consequence sensitivity impulsivity were increased during the peak effects of depletion. Conclusion: Though response initiation and consequence sensitivity impulsivity were affected by tryptophan depletion, response inhibition impulsivity was not, suggesting that other biological processes may underlie this specific component of impulsivity. Future research in other populations or using different pharmacological agents is warranted to further examine the biological processes underlying these components of impulsivity

    Trajectory Design Analysis over the Lunar Nodal Cycle for the Multi-Purpose Crew Vehicle (MPCV) Exploration Mission 2 (EM-2)

    Get PDF
    The first crewed mission, Exploration Mission 2 (EM-2), for the MPCV Orion spacecraft is scheduled for August 2021, and its current mission is to orbit the Moon in a highly elliptical lunar orbit for 3 days. A 21-year scan was performed to identify feasible missions that satisfy the propulsive capabilities of the Interim Cryogenic Propulsion Stage (ICPS) and MPCV Service Module (SM). The mission is divided into 4 phases: (1) a lunar free return trajectory, (2) a hybrid maneuver, during the translunar coast, to lower the approach perilune altitude to 100 km, (3) lunar orbit insertion into a 100 x 10,000 km orbit, and (4) lunar orbit loiter and Earth return to a splashdown off the coast of Southern California. Trajectory data was collected for all feasible missions and converted to information that influence different subsystems including propulsion, power, thermal, communications, and mission operations. The complete 21-year scan data shows seasonal effects that are due to the Earth-Moon geometry and the initial Earth parking orbit. The data and information is also useful to identify mission opportunities around the current planned launch date for EM-2

    Short communication : Modeling competing effects of cooling rate, grain size, and radiation damage in low-temperature thermochronometers

    Get PDF
    Funding Information: Financial support. This research has been supported by the NSERC Discovery, and from the Geological Survey of Canada, Natural Resources Canada. Publisher Copyright: © Copyright:Low-temperature multi-thermochronometry, in which the (U-Th)ĝ€¯/ĝ€¯He and fission track methods are applied to minerals such as zircon and apatite, is a valuable approach for documenting rock cooling histories and relating them to geological processes. Here we explore the behaviors of two of the most commonly applied low-temperature thermochronometers, (U-Th)ĝ€¯/ĝ€¯He in zircon (ZHe) and apatite (AHe), and directly compare them against the apatite fission track (AFT) thermochronometer for different forward-modeled cooling scenarios. We consider the impacts that common variations in effective spherical radius (ESR) and effective uranium concentration (eU) may have on cooling ages and closure temperatures under a range of different cooling rates. This exercise highlights different scenarios under which typical age relationships between these thermochronometers (ZHe>AFT>AHe) are expected to collapse or invert (either partially or fully). We anticipate that these predictions and the associated software we provide will be a useful tool for teaching, planning low-temperature multi-thermochronometry studies, and for continued exploration of the relative behaviors of these thermochronometers in temperature-time space through forward models.Peer reviewe
    corecore