444 research outputs found

    Fe/GeTe(111) heterostructures as an avenue towards 'ferroelectric Rashba semiconductors'-based spintronics

    Full text link
    By performing density functional theory (DFT) and Green's functions calculations, complemented by X-ray Photoemission Spectroscopy, we investigate the electronic structure of Fe/GeTe(111), a prototypical ferromagnetic/Rashba-ferroelectric interface. We reveal that such system exhibits several intriguing properties resulting from the complex interplay of exchange interaction, electric polarization and spin-orbit coupling. Despite a rather strong interfacial hybridization between Fe and GeTe bands, resulting in a complete suppression of the surface states of the latter, the bulk Rashba bands are hardly altered by the ferromagnetic overlayer. This could have a deep impact on spin dependent phenomena observed at this interface, such as spin-to-charge interconversion, which are likely to involve bulk rather than surface Rashba states.Comment: 8 pages, 4 figure

    Sviluppo di una cella produttiva secondo la logica chaku-chaku in Carel Industries S.p.a.

    Get PDF
    L'impianto produttivo in esame presentava diverse criticità tra le quali un basso rendimento globale, indice di scarso utilizzo delle risorse, e una gestione della produzione complessa. La direzione intrapresa da CAREL è stata quella di unire le due linee presenti in una cella di produzione che seguisse i principi della lean manufacturing: in particolare la cella implementata segue la logica chaku-chaku, che in giapponese significa carica-caricaopenEmbargo per motivi di segretezza e/o di proprietà dei risultati e informazioni di enti esterni o aziende private che hanno partecipato alla realizzazione del lavoro di ricerca relativo alla tes

    New Insights on Eggplant/Tomato/Pepper Synteny and Identification of Eggplant and Pepper Orthologous QTL

    Get PDF
    Eggplant, pepper and tomato are the most exploited berry-producing vegetables within the Solanaceae family. Their genomes differ in size, but each has 12 chromosomes which have undergone rearrangements causing a redistribution of loci. The genome sequences of all three species are available but differ in coverage, assembly quality and percentage of anchorage.Determining their syntenic relationship and QTL orthology will contribute to exploit genomic resources and genetic data for key agronomic traits.The syntenic analysis between tomato and pepper based on the alignment of 34,727 tomato CDS to the pepper genome sequence, identified 19,734 unique hits. The resulting synteny map confirmed the 14 inversions and 10 translocations previously documented, but also highlighted 3 new translocations and 4 major new inversions. Furthermore, each of the 12 chromosomes exhibited a number of rearrangements involving small regions of 0.5-0.7 Mbp.Due to high fragmentation of the publicly available eggplant genome sequence, physical localization of most eggplant QTL was not possible, thus, we compared the organization of the eggplant genetic map with the genome sequence of both tomato and pepper. The eggplant/tomato syntenic map confirmed all the 10 translocations but only 9 of the 14 known inversions; on the other hand, a newly detected inversion was recognized while another one was not confirmed. The eggplant/pepper syntenic map confirmed 10 translocations and 8 inversions already detected and suggested a putative new translocation.In order to perform the assessment of eggplant and pepper QTL orthology, the eggplant and pepper sequence-based markers located in their respective genetic map were aligned onto the pepper genome. GBrowse in pepper was used as reference platform for QTL positioning. A set of 151 pepper QTL were located as well as 212 eggplant QTL, including 76 major QTL (PVE ≄ 10%) affecting key agronomic traits. Most were confirmed to cluster in orthologous chromosomal regions.Our results highlight that the availability of genome sequences for an increasing number of crop species and the development of ultra-dense physical maps provide new and key tools for detailed syntenic and orthology studies between related plant species

    GPGPU for track finding in High Energy Physics

    Full text link
    The LHC experiments are designed to detect large amount of physics events produced with a very high rate. Considering the future upgrades, the data acquisition rate will become even higher and new computing paradigms must be adopted for fast data-processing: General Purpose Graphics Processing Units (GPGPU) is a novel approach based on massive parallel computing. The intense computation power provided by Graphics Processing Units (GPU) is expected to reduce the computation time and to speed-up the low-latency applications used for fast decision taking. In particular, this approach could be hence used for high-level triggering in very complex environments, like the typical inner tracking systems of the multi-purpose experiments at LHC, where a large number of charged particle tracks will be produced with the luminosity upgrade. In this article we discuss a track pattern recognition algorithm based on the Hough Transform, where a parallel approach is expected to reduce dramatically the execution time.Comment: 6 pages, 4 figures, proceedings prepared for GPU-HEP 2014 conference, submitted to DESY-PROC-201

    Multi-wavelength SPAD photoplethysmography for cardio-respiratory monitoring

    Get PDF
    There is a growing interest in photoplethysmography (PPG) for the continuous monitoring of cardio-respiratory signals by portable instrumentation aimed at the early diagnosis of cardiovascular diseases. In this context, it is conceivable that PPG sensors working at different wavelengths simultaneously can optimize the identification of apneas and the quantification of the associated heart-rate changes or other parameters that depend on the PPG shape (e.g., systematic vascular resistance and pressure), when evaluating the severity of breathing disorders during sleep and in general for health monitoring. Therefore, the objective of this work is to present a novel pulse oximeter that provides synchronous data logging related to three light wavelengths (green, red, and infrared) in transmission mode to optimize both heart rate measurements and a reliable and continuous assessment of oxygen saturation. The transmission mode is considered more robust over motion artifacts than reflection mode, but current pulse oximeters cannot employ green light in transmission mode due to the high absorbance of body tissues at this wavelength. For this reason, our device is based on a Single-Photon Avalanche Diode (SPAD) with very short deadtime (less than 1 ns) to have, at the same time, the single photon sensitivity and high-count rate that allows acquiring all the wavelengths of interest on the same site and in transmission mode. Previous studies have shown that SPAD cameras can be used for measuring the heart rate through remote PPG, but oxygen saturation and heart-rate measures through contact SPAD-based PPG sensors have never been addressed so far. The results of the preliminary validation on six healthy volunteers reflect the expected physiological phenomena, providing rms errors in the Inter Beat Interval estimation smaller than 70 ms (with green light) and a maximum error in the oxygen saturation smaller than 1% during the apneas. Our prototype demonstrates the reliability of SPAD-based devices for continuous long-term monitoring of cardio-respiratory variables as an alternative to photodiodes especially when minimal area and optical power are required

    Blocking Temperature Engineering in Exchange-Biased CoFeB/IrMn Bilayer

    Get PDF
    In this paper, we report on the magnetic and chemical characterization of the exchange-biased CoFeB/IrMn bilayers, grown by magnetron sputtering on a Si-based platform and capped by either a Ru or MgO/Ru overlayer. For Ru capping, the locking temperature monotonously increases with the IrMn thickness within the investigated range (3.5–8 nm). On the contrary, for MgO/Ru capping, the exchange bias is inhibited below 6 nm, whereas above 6 nm, the magnetic behavior is the same of Ru-capped films. The chemical analysis reveals a significant dependence of the Mn content from the capping layer for thin IrMn films (2.5 nm), whereas the difference disappears when IrMn becomes thick (7 nm). Our work suggests that a non-uniform composition of the IrMn films directly affects the exchange coupling at the IrMn/CoFeB interface

    Natural Language Processing of Clinical Notes on Chronic Diseases: Systematic Review

    Get PDF
    Novel approaches that complement and go beyond evidence-based medicine are required in the domain of chronic diseases, given the growing incidence of such conditions on the worldwide population. A promising avenue is the secondary use of electronic health records (EHRs), where patient data are analyzed to conduct clinical and translational research. Methods based on machine learning to process EHRs are resulting in improved understanding of patient clinical trajectories and chronic disease risk prediction, creating a unique opportunity to derive previously unknown clinical insights. However, a wealth of clinical histories remains locked behind clinical narratives in free-form text. Consequently, unlocking the full potential of EHR data is contingent on the development of natural language processing (NLP) methods to automatically transform clinical text into structured clinical data that can guide clinical decisions and potentially delay or prevent disease onset

    Ferroelectric control of the spin texture in germanium telluride

    Get PDF
    The electrical manipulation of spins in semiconductors, without magnetic fields or auxiliary ferromagnetic materials, represents the holy grail for spintronics. The use of Rashba effect is very attractive because the k-dependent spin-splitting is originated by an electric field. So far only tiny effects in two-dimensional electron gases (2DEG) have been exploited. Recently, GeTe has been predicted to have bulk bands with giant Rashba-like splitting, originated by the inversion symmetry breaking due to ferroelectric polarization. In this work, we show that GeTe(111) surfaces with inwards or outwards ferroelectric polarizations display opposite sense of circulation of spin in bulk Rashba bands, as seen by spin and angular resolved photoemission experiments. Our results represent the first experimental demonstration of ferroelectric control of the spin texture in a semiconductor, a fundamental milestone towards the exploitation of the non-volatile electrically switchable spin texture of GeTe in spintronic devices.Comment: 18 pages, 4 figure

    Healthcare Associated Infections. educational intervention by "Adult Learning" in an Italian teaching hospital

    Get PDF
    An educational intervention for HAI prevention based on a combination of training, motivation and subsequent application in the current clinical practice in an Italian teaching hospital
    • 

    corecore