5 research outputs found

    Down-regulation of ANAPC13 and CLTCL1: Early Events in the Progression of Preinvasive Ductal Carcinoma of the Breast

    Get PDF
    Alterations in the gene expression profile in epithelial cells during breast ductal carcinoma (DC) progression have been shown to occur mainly between pure ductal carcinoma in situ (DCIS) to the in situ component of a lesion with coexisting invasive ductal carcinoma (DCIS-IDC) implying that the molecular program for invasion is already established in the preinvasive lesion. For assessing early molecular alterations in epithelial cells that trigger tumorigenesis and testing them as prognostic markers for breast ductal carcinoma progression, we analyzed, by reverse transcription-quantitative polymerase chain reaction, eight genes previously identified as differentially expressed between epithelial tumor cells populations captured from preinvasive lesions with distinct malignant potential, pure DCIS and the in situ component of DCIS-IDC. ANAPC13 and CLTCL1 down-regulation revealed to be early events of DC progression that anticipated the invasiveness manifestation. Further down-regulation of ANAPC13 also occurred after invasion appearance and the presence of the protein in invasive tumor samples was associated with higher rates of overall and disease-free survival in breast cancer patients. Furthermore, tumors with low levels of ANAPC13 displayed increased copy number alterations, with significant gains at 1q (1q23.1-1q32.1), 8q, and 17q (17q24.2), regions that display common imbalances in breast tumors, suggesting that down-regulation of ANAPC13 contributes to genomic instability in this disease.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (CEPID/FAPESP) [98/14335]Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (CEPID/FAPESP)CNPqCNPq [142790/2008-7]FAPESP [2009/00669-2, 2009/02457-2]FAPES

    Telomere-Centromere-Driven Genomic Instability Contributes to Karyotype Evolution in a Mouse Model of Melanoma1,2

    Get PDF
    Aneuploidy and chromosomal instability (CIN) are hallmarks of most solid tumors. These alterations may result from inaccurate chromosomal segregation during mitosis, which can occur through several mechanisms including defective telomere metabolism, centrosome amplification, dysfunctional centromeres, and/or defective spindle checkpoint control. In this work, we used an in vitro murine melanoma model that uses a cellular adhesion blockade as a transforming factor to characterize telomeric and centromeric alterations that accompany melanocyte transformation. To study the timing of the occurrence of telomere shortening in this transformation model, we analyzed the profile of telomere length by quantitative fluorescent in situ hybridization and found that telomere length significantly decreased as additional rounds of cell adhesion blockages were performed. Together with it, an increase in telomere-free ends and complex karyotypic aberrations were also found, which include Robertsonian fusions in 100% of metaphases of the metastatic melanoma cells. These findings are in agreement with the idea that telomere length abnormalities seem to be one of the earliest genetic alterations acquired in the multistep process of malignant transformation and that telomere abnormalities result in telomere aggregation, breakage-bridge-fusion cycles, and CIN. Another remarkable feature of this model is the abundance of centromeric instability manifested as centromere fragments and centromeric fusions. Taken together, our results illustrate for this melanoma model CIN with a structural signature of centromere breakage and telomeric loss

    A Transcript Finishing Initiative for Closing Gaps in the Human Transcriptome

    Get PDF
    We report the results of a transcript finishing initiative, undertaken for the purpose of identifying and characterizing novel human transcripts, in which RT-PCR was used to bridge gaps between paired EST clusters, mapped against the genomic sequence. Each pair of EST clusters selected for experimental validation was designated a transcript finishing unit (TFU). A total of 489 TFUs were selected for validation, and an overall efficiency of 43.1% was achieved. We generated a total of 59,975 bp of transcribed sequences organized into 432 exons, contributing to the definition of the structure of 211 human transcripts. The structure of several transcripts reported here was confirmed during the course of this project, through the generation of their corresponding full-length cDNA sequences. Nevertheless, for 21% of the validated TFUs, a full-length cDNA sequence is not yet available in public databases, and the structure of 69.2% of these TFUs was not correctly predicted by computer programs. The TF strategy provides a significant contribution to the definition of the complete catalog of human genes and transcripts, because it appears to be particularly useful for identification of low abundance transcripts expressed in a restricted set of tissues as well as for the delineation of gene boundaries and alternatively spliced isoforms
    corecore