33 research outputs found

    Estudio del mecanismo de muerte asociado a la terapia antitumoral linamarasa/linamarina/glucosa oxidasa

    Full text link
    Tesis doctoral inédita. Universidad Autónoma de Madrid, Facultad de Ciencias, Departamento de Biología Molecular. Fecha de lectura: 15-10-200

    Novel Functions of the Neurodegenerative-Related Gene Tau in Cancer

    Get PDF
    The analysis of global and comparative genomics between different diseases allows us to understand the key biological processes that explain the etiology of these pathologies. We have used this type of approach to evaluate the expression of several neurodegeneration-related genes on the development of tumors, particularly brain tumors of glial origin (gliomas), which are an aggressive and incurable type of cancer. We have observed that genes involved in Amyotrophic lateral sclerosis (ALS), as well as in Alzheimer's and Parkinson's diseases, correlate with better prognosis of gliomas. Within these genes, high Tau/MAPT expression shows the strongest correlation with several indicators of prolonged survival on glioma patients. Tau protein regulates microtubule stability and dynamics in neurons, although there have been reports of its expression in glial cells and also in gliomas. However, little is known about the regulation of Tau/MAPT transcription in tumors. Moreover, our in silico analysis indicates that this gene is also expressed in a variety of tumors, showing a general correlation with survival, although its function in cancer has not yet been addressed. Another remarkable aspect of Tau is its involvement in resistance to taxanes in various tumors types such as breast, ovarian and gastric carcinomas. This is due to the fact that taxanes have the same tubulin-binding site as Tau. In the present work we review the main knowledge about Tau function and expression in tumors, with a special focus on brain cancer. We will also speculate with the therapeutic implications of these findings.RG has been funded by the AECC Scientific Foundation. Research has been funded by grants from the Ministerio de Economía y Competitividad (MINECO-RETOS)/FEDER: SAF2015-65175-R to PS-G.S

    WIP Drives Tumor Progression through YAP/TAZ-Dependent Autonomous Cell Growth

    Get PDF
    In cancer, the deregulation of growth signaling pathways drives changes in the cell¿s architecture and its environment that allow autonomous growth of tumors. These cells then acquire a tumor-initiating ¿stemness¿ phenotype responsible for disease advancement to more aggressive stages. Here, we show that high levels of the actin cytoskeleton-associated protein WIP (WASP-interacting protein) correlates with tumor growth, both of which are linked to the tumor-initiating cell phenotype. We find that WIP controls tumor growth by boosting signals that stabilize the YAP/TAZ complex via a mechanism mediated by the endocytic/endosomal system. When WIP levels are high, the ß-catenin Adenomatous polyposis coli (APC)-axin-GSK3 destruction complex is sequestered to the multi-vesicular body compartment, where its capacity to degrade YAP/TAZ is inhibited. YAP/TAZ stability is dependent on Rac, p21-activated kinase (PAK) and mammalian diaphanous-related formin (mDia), and is Hippo independent. This close biochemical relationship indicates an oncogenic role for WIP in the physiology of cancer pathology by increasing YAP/TAZ stability.MINECO (SAF2013-45937-R to I.M.A.) and MINECO/FEDER (SAF2015-70368-R to I.M.A. and F.W.), the European Union (EU-FP7-2009-CT222887 to F.W.), the Instituto de Salud Carlos III Centro de Investigación Biomédica en Red (CIBERNED to F.W.) and by a grant from ISCIII-RETIC (RD12/0036/0009 to R.G.E.)Peer Reviewe

    Advanced immunotherapies for glioblastoma: tumor neoantigen vaccines in combination with immunomodulators

    Get PDF
    Correction to: Advanced immunotherapies for glioblastoma: tumor neoantigen vaccines in combination with immunomodulators. Acta Neuropathol Commun. 2023 Jul 12;11(1):116. doi: 10.1186/s40478-023-01600-2. PMID: 37438824.Glial-origin brain tumors, including glioblastomas (GBM), have one of the worst prognoses due to their rapid and fatal progression. From an oncological point of view, advances in complete surgical resection fail to eliminate the entire tumor and the remaining cells allow a rapid recurrence, which does not respond to traditional therapeutic treatments. Here, we have reviewed new immunotherapy strategies in association with the knowledge of the immune micro-environment. To understand the best lines for the future, we address the advances in the design of neoantigen vaccines and possible new immune modulators. Recently, the efficacy and availability of vaccine development with different formulations, especially liposome plus mRNA vaccines, has been observed. We believe that the application of new strategies used with mRNA vaccines in combination with personalized medicine (guided by different omic's strategies) could give good results in glioma therapy. In addition, a large part of the possible advances in new immunotherapy strategies focused on GBM may be key improving current therapies of immune checkpoint inhibitors (ICI), given the fact that this type of tumor has been highly refractory to ICI.This study has been funded by Instituto de Salud Carlos III (ISCIII) through the project “CP21/00116 and PI22/0117” and co-funded by the European Union to RG, by “Asociación Española contra el Cancer (AECC) grant: INVES192GARG to RG and by Ministerio de Ciencia e Innovación and FEDER funds: PI21/01406 to JMSS.S

    Benefit of Oleuropein Aglycone for Alzheimer’s Disease by Promoting Autophagy

    Get PDF
    Alzheimer’s disease is a proteinopathy characterized by accumulation of hyperphosphorylated Tau and β-amyloid. Autophagy is a physiological process by which aggregated proteins and damaged organelles are eliminated through lysosomal digestion. Autophagy deficiency has been demonstrated in Alzheimer’s patients impairing effective elimination of aggregates and damaged mitochondria, leading to their accumulation, increasing their toxicity and oxidative stress. In the present study, we demonstrated by microarray analysis the downregulation of fundamental autophagy and mitophagy pathways in Alzheimer’s patients. The benefits of the Mediterranean diet on Alzheimer’s disease and cognitive impairment are well known, attributing this effect to several polyphenols, such as oleuropein aglycone (OLE), present in extra virgin olive oil. OLE is able to induce autophagy, achieving a decrease of aggregated proteins and a reduction of cognitive impairment in vivo. This effect is caused by the modulation of several pathways including the AMPK/mTOR axis and the activation of autophagy gene expression mediated by sirtuins and histone acetylation or EB transcription factor. We propose that supplementation of diet with extra virgin olive oil might have potential benefits for Alzheimer’s patients by the induction of autophagy by OLE

    Transcription factor NRF2 uses the Hippo pathway effector TAZ to induce tumorigenesis in glioblastomas

    Full text link
    Transcription factor NRF2 orchestrates a cellular defense against oxidative stress and, so far, has been involved in tumor progression by providing a metabolic adaptation to tumorigenic demands and resistance to chemotherapeutics. In this study, we discover that NRF2 also propels tumorigenesis in gliomas and glioblastomas by inducing the expression of the transcriptional co-activator TAZ, a protein of the Hippo signaling pathway that promotes tumor growth. The expression of the genes encoding NRF2 (NFE2L2) and TAZ (WWTR1) showed a positive correlation in 721 gliomas from The Cancer Genome Atlas database. Moreover, NRF2 and TAZ protein levels also correlated in immunohistochemical tissue arrays of glioblastomas. Genetic knock-down of NRF2 decreased, while NRF2 overexpression or chemical activation with sulforaphane, increased TAZ transcript and protein levels. Mechanistically, we identified several NRF2-regulated functional enhancers in the regulatory region of WWTR1. The relevance of the new NRF2/TAZ axis in tumorigenesis was demonstrated in subcutaneous and intracranial grafts. Thus, intracranial inoculation of NRF2-depleted glioma stem cells did not develop tumors as determined by magnetic resonance imaging. Forced TAZ overexpression partly rescued both stem cell growth in neurospheres and tumorigenicity. Hence, NRF2 not only enables tumor cells to be competent to proliferate but it also propels tumorigenesis by activating the TAZ-mediated Hippo transcriptional program.This study was funded by the Spanish Ministry of Economy and Competitiveness (MINECO) under the grant SAF2016-76520-R. ME is recipient of a postdoctoral contract Juan de la Cierva; DL and NRA of a FPU contract of MINECO; MP and RFG of a FPI contracts of Autonomous University of Madrid. RG has been funded by the AECC Scientific Foundation

    A new non-aggregative splicing isoform of human Tau is decreased in Alzheimer's disease.

    Get PDF
    Tauopathies, including Alzheimer's disease (AD) and frontotemporal lobar degeneration with Tau pathology (FTLD-tau), are a group of neurodegenerative disorders characterized by Tau hyperphosphorylation. Post-translational modifications of Tau such as phosphorylation and truncation have been demonstrated to be an essential step in the molecular pathogenesis of these tauopathies. In this work, we demonstrate the existence of a new, human-specific truncated form of Tau generated by intron 12 retention in human neuroblastoma cells and, to a higher extent, in human RNA brain samples, using qPCR and further confirming the results on a larger database of human RNA-seq samples. Diminished protein levels of this new Tau isoform are found by Westernblotting in Alzheimer's patients' brains (Braak I n = 3; Braak II n = 6, Braak III n = 3, Braak IV n = 1, and Braak V n = 10, Braak VI n = 8) with respect to non-demented control subjects (n = 9), suggesting that the lack of this truncated isoform may play an important role in the pathology. This new Tau isoform exhibits similar post-transcriptional modifications by phosphorylation and affinity for microtubule binding, but more interestingly, is less prone to aggregate than other Tau isoforms. Finally, we present evidence suggesting this new Tau isoform could be linked to the inhibition of GSK3β, which would mediate intron 12 retention by modulating the serine/arginine rich splicing factor 2 (SRSF2). Our results show the existence of an important new isoform of Tau and suggest that further research on this less aggregation-prone Tau may help to develop future therapies for Alzheimer's disease and other tauopathies.This work was supported by the Ministerio de Ciencia, Innovación y Universidades from Spain (PGC2018-096177-B-00). Institutional grants from the Fundación Ramón Areces and Banco de Santander to CBMSO are also acknowledged. The Asociación Española Contra el Cáncer Scientific Foundation has financed Ricardo Gargini. We would like to acknowledge Daniela Rosiles for her technical support in cloning.S

    Ocoxin Modulates Cancer Stem Cells and M2 Macrophage Polarization in Glioblastoma

    Get PDF
    Glioblastoma (GBM) is the most common and devastating primary brain tumor. The presence of cancer stem cells (CSCs) has been linked to their therapy resistance. Molecular and cellular components of the tumor microenvironment also play a fundamental role in the aggressiveness of these tumors. In particular, high levels of hypoxia and reactive oxygen species participate in several aspects of GBM biology. Moreover, GBM contains a large number of macrophages, which normally behave as immunosuppressive tumor-supportive cells. In fact, the presence of both, hypoxia and M2-like macrophages, correlates with malignancy and poor prognosis in gliomas. Antioxidant agents, as nutritional supplements, might have antitumor activity. Ocoxin® oral solution (OOS), in particular, has anti-inflammatory and antioxidant properties, as well as antitumor properties in several neoplasia, without known side effects. Here, we describe how OOS affects stem cell properties in certain GBMs, slowing down their tumor growth. In parallel, OOS has a direct effect on macrophage polarization in vitro and in vivo, inhibiting the protumoral features of M2 macrophages. Therefore, OOS could be a feasible candidate to be used in combination therapies during GBM treatment because it can target the highly resilient CSCs as well as their supportive immune microenvironment, without adding toxicity to conventional treatments.The authors would like to acknowledge Atanasio Pandiella for critical comments on the manuscript, Rosella Galli for donating GBM1, and Jacqueline Gutiérrez, Daniela Moiseev, Daniel Batzan, and Mario Alia for their technical support. RG has been funded by the Fundación Científica Asociación Española Contra el Cáncer. Research has been funded by grants from Fundación Científica Asociación Española Contra el Cáncer (18/006) to JMS; from MINECO: Acción Estratégica en Salud (AES) PI13/01258 to AHL; AES PI17/01621 to JMS; Red Temática de Investigación Cooperativa en Cancer (RTICC) RD12/0036/0027 to AHL, JMS, APN, and PSG; and MINECO-RETOS/FEDER SAF2015-65175 to PSG.S

    On optimal temozolomide scheduling for slowly growing glioblastomas

    Get PDF
    Background: Temozolomide (TMZ) is an oral alkylating agent active against gliomas with a favorable toxicity profile. It is part of the standard of care in the management of glioblastoma (GBM), and is commonly used in low-grade gliomas (LGG). In-silico mathematical models can potentially be used to personalize treatments and to accelerate the discovery of optimal drug delivery schemes. Methods: Agent-based mathematical models fed with either mouse or patient data were developed for the in-silico studies. The experimental test beds used to confirm the results were: mouse glioma models obtained by retroviral expression of EGFR-wt/EGFR-vIII in primary progenitors from p16/p19 ko mice and grown in-vitro and in-vivo in orthotopic allografts, and human GBM U251 cells immobilized in alginate microfibers. The patient data used to parametrize the model were obtained from the TCGA/TCIA databases and the TOG clinical study. Results: Slow-growth "virtual" murine GBMs benefited from increasing TMZ dose separation in-silico. In line with the simulation results, improved survival, reduced toxicity, lower expression of resistance factors, and reduction of the tumor mesenchymal component were observed in experimental models subject to long-cycle treatment, particularly in slowly growing tumors. Tissue analysis after long-cycle TMZ treatments revealed epigenetically driven changes in tumor phenotype, which could explain the reduction in GBM growth speed. In-silico trials provided support for implementation methods in human patients. Conclusions: In-silico simulations, in-vitro and in-vivo studies show that TMZ administration schedules with increased time between doses may reduce toxicity, delay the appearance of resistances and lead to survival benefits mediated by changes in the tumor phenotype in slowly-growing GBMs.This research was funded by the James S. Mc. Donnell Foundation (USA) 21st Century Science Initiative in Mathematical and Complex Systems Approaches for Brain Cancer (Collaborative award 220020560, doi:10.37717/220020560); Ministry of Education, Science and Technological Development, Republic of Serbia (ref. number 451-03-9/2021-14/200007); Ministerio de Ciencia e Innovación and FEDER funds, Spain (grant number PID2019-110895RB-I00, doi: 10.13039/501100011033 to VMP-G, and RTI2018-093596 and PI21CIII/00002 to PS-G); and Universidad de Castilla-La Mancha (grant number 2020-PREDUCLM-15634 to JJ-S).S

    Tumor-derived pericytes driven by egfr mutations govern the vascular and immune microenvironment of gliomas

    Get PDF
    The extraordinary plasticity of glioma cells allows them to contribute to different cellular compartments in tumor vessels, reinforcing the vascular architecture. It was recently revealed that targeting glioma-derived pericytes, which represent a big percentage of the mural cell population in aggressive tumors, increases the permeability of the vessels and improves the efficiency of chemotherapy. However, the molecular determinants of this transdifferentiation process have not been elucidated. Here we show that mutations in EGFR stimulate the capacity of glioma cells to function as pericytes in a BMX- (bone marrow and X-linked) and SOX9-dependent manner. Subsequent activation of platelet-derived growth factor receptor beta in the vessel walls of EGFR-mutant gliomas stabilized the vasculature and facilitated the recruitment of immune cells. These changes in the tumor microenvironment conferred a growth advantage to the tumors but also rendered them sensitive to pericyte-targeting molecules such as ibrutinib or sunitinib. In the absence of EGFR mutations, high-grade gliomas were enriched in blood vessels, but showed a highly disrupted blood–brain barrier due to the decreased BMX/SOX9 activation and pericyte coverage, which led to poor oxygenation, necrosis, and hypoxia. Overall, these findings identify EGFR mutations as key regulators of the glioma-to-pericyte transdifferentiation, highlighting the intricate relationship between the tumor cells and their vascular and immune milieu. Our results lay the foundations for a vascular-dependent stratification of gliomas and suggest different therapeutic vulnerabilities determined by the genetic status of EGFR.This work was supported by FONDECYT grant (1140697 to V. Palma), CONICYT Fellowship (to B.S. Casas), by Ministerio de Economía y Competitividad and FEDER funds (PI13/01258 to A. Hernandez-Laín; PI17/01621 to J.M. Sepulveda-S anchez; and PI16/01580 and DTS18/00181 to A. Matheu), by Young Employment Initiative (Comunidad de Madrid) to M. Garranzo-Asensio, by “Asociacion Espanola contra ~ el Cancer” (AECC) grants (INVES192GARG to R. Gargini; GCTRA16015SEDA to J.M. Sepulveda-S anchez); and by Ministerio de Ciencia, Innovacion y Universidades and FEDER funds (RTI2018-093596 to P. Sanchez-Gomez).Peer reviewe
    corecore