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SUMMARY

In cancer, the deregulation of growth signaling
pathways drives changes in the cell’s architecture
and its environment that allow autonomous growth
of tumors. These cells then acquire a tumor-initiating
‘‘stemness’’ phenotype responsible for disease
advancement to more aggressive stages. Here, we
show that high levels of the actin cytoskeleton-asso-
ciated protein WIP (WASP-interacting protein) corre-
lates with tumor growth, both of which are linked to
the tumor-initiating cell phenotype. We find that
WIP controls tumor growth by boosting signals that
stabilize the YAP/TAZ complex via a mechanism
mediated by the endocytic/endosomal system.
When WIP levels are high, the b-catenin Adenoma-
tous polyposis coli (APC)-axin-GSK3 destruction
complex is sequestered to the multi-vesicular body
compartment, where its capacity to degrade YAP/
TAZ is inhibited. YAP/TAZ stability is dependent on
Rac, p21-activated kinase (PAK) and mammalian
diaphanous-related formin (mDia), and is Hippo inde-
pendent. This close biochemical relationship indi-
cates an oncogenic role for WIP in the physiology
of cancer pathology by increasing YAP/TAZ stability.
INTRODUCTION

A common feature of many tumors is their dependence on

survival signals such as upregulation of the phosphatidylinositol

3-kinase (PI3K)-AKT and mitogen-activated protein kinase

(MAPK) pathways (Hanahan and Weinberg, 2011), which allow

some autocrine signaling. Many tumor cell types nonetheless

depend on endo- or exocytosis for their growth, migration, and

invasion (Joffre et al., 2011). It was initially considered that

the only role of endocytosis was to restrict signals by internaliza-
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tion of membrane receptors, but it was later shown that the

endosomal system also has a central role as a second round

of signals that determine the final effect of these receptors

(Dobrowolski and De Robertis, 2011). The regulation of actin

polymerization is central to coordinating receptor-mediated

endocytosis as well as receptor recycling and degradation

(Schafer, 2002). Some of these processes also require actin

cytoskeleton dynamics to coordinate cell proliferation and inva-

sion, which are associated with metastasis. Several regulatory

and actin-associatedmolecules, such asWASP (Wiskott-Aldrich

syndrome protein) family proteins orWIP (WASP-interacting pro-

tein) participate in migration and invadopodium formation, which

might sustain metastasis (Stevenson et al., 2012), but only a few

have essential roles in cancer pathology.

The YAP/TAZ complex of transcriptional co-activators is

directly implicated in tumor development and cancer stem cell

or tumor-initiating cells (TICs) (Cordenonsi et al., 2011). The

b-catenin destruction complex (adenomatous polyposis coli

[APC]/axin/GSK3), which controls b-catenin transcriptional ac-

tivity in the Wnt pathway, regulates YAP/TAZ stability and tran-

scription (Azzolin et al., 2012, 2014). YAP/TAZ binds axin, which

allows the complex to interact with its ubiquitin ligase bTrCP,

which facilitates ubiquitination and subsequent degradation of

YAP/TAZ and b-catenin (Azzolin et al., 2012, 2014). This mecha-

nism coordinates the regulation of these transcription factors.

APC/axin/GSK3 can be sequestered in the multivesicular bodies

(MVBs) of the endosomal compartment, which blocks b-catenin

degradation, a key step in Wnt signaling induction. Formation of

the degradation complex and its sequestration could amplify

Wnt signaling for b-catenin (Taelman et al., 2010).

Here we show the involvement of the actin regulator WIP in

cancer progression. We describe a pro-tumor relationship be-

tween WIP levels and those of the transcriptional co-activators

YAP/TAZ. WIP also mediates cell growth signals such as

MAPK, a function controlled by the endocytic/endosomal sys-

tems,which sequester theAPC/axin/GSK3degradation complex

and promote YAP/TAZ stability. This WIP-mediated YAP/TAZ

stability is supported by a close correlation in the expression of

these proteins. Moreover, we show that WIP controls YAP/TAZ
uthors.
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levels in several in vitro models; it acts as a master regulator of

pro-tumor functions such as proliferation and cell survival and

promotes the establishment of stemness and invasiveness. By

modifying the endocytic/endosomal systems to block degrada-

tion of YAP/TAZ and b-catenin transcription factors, by promot-

ing autocrine growth, by favoring TIC generation, and by allowing

establishment of an aggressive tumor phenotype, WIP shows

certain characteristics of an oncogene.

RESULTS

WIP Correlates with a High Tumor Proliferation Rate
and Stemness
Although several studies have implicated the actin cytoskeleton

in cancer pathology (Stevenson et al., 2012), actin-associated

proteins such asWIP have not been connected specifically to tu-

mor transformation or acquisition of stem phenotypes. We

analyzed the expression of WIP and of the proliferative marker

Ki67 in brain tissue samples from patients with glioblastoma

multiforme (GB) and controls (Figures 1A–1G) as well as WIP

expression in tumor cell lines derived from various cancer types

(Figure S1A). WIP was significantly overexpressed in GB

compared with normal brain tissue (p = 3 3 10�7) (Figure 1A)

and, within the GB panel, was increased in the more aggressive

mesenchymal subtype (Figure S1B). In tumor cells derived from

GB patient surgical specimens, stem marker CD133 levels were

high in three explants (GB4, 5, and 8) cultured under stem con-

ditions (which favors the TIC population) and low when grown

in DMEM with 10% fetal bovine serum (FBS) (DMEM 10%,

Adherent) (Figure 1C). Biochemical analysis indicated differential

WIP expression (Figure 1D). Immunofluorescence (IF) analysis of

tumor spheres showed a greater proliferative capacity (Ki67+

cells) of high WIP-expressing GB4 and GB8 compared with

low proliferative, low WIP-expressing GB7 and GB11 (Figures

1B and 1E–1G). Two WIP-specific small hairpin RNAs (shRNAs)

significantly impaired cell growth under stem conditions, fol-

lowed by 4,5-dimethylthiazol-2-yl (MTT) assay (Figures S1C–

S1F), or as secondary spheres, or under anchorage-indepen-

dent (soft agar) growth conditions (Figures 1H–1K).

Western blot analysis from fluorescence-activated cell sorting

(FACS)-purified CD44Low/CD24High cell and CD44High/CD24Low

(TIC) populations indicated that WIP expression was increased

in TICs (Figure S1G). In parallel, we used extreme limiting dilution

analysis to assay cell capacity to generate tumor spheres.

CD44High/CD24Low TIC population growth was severely

impeded by WIP knockdown (Figure S1H). These data show a

direct relationship between high tumor proliferation and stem-

ness levels and high WIP levels in patient-derived samples.

WIP Levels Correlate with YAP/TAZ and Are Crucial
for Tumor Progression In Vitro and In Vivo
YAP/TAZ levels are specifically increased in several human

cancers and are fundamental for maintenance, proliferation,

and tumor initiation in breast cancer stem cells (Moroishi et al.,

2015). Western blot analysis of a panel of human brain tissue

samples, using an antibody that recognizes both proteins,

showed significant correlation between WIP and YAP or TAZ

levels (Figures 2A and 2B). We tested additional cell lines of other
CELREP
cancer lineages and again observed a close correlation between

WIP and YAP or TAZ levels (Figures S2A and S2B). To determine

whether there is direct WIP and YAP/TAZ interdependence, we

knocked down WIP in two GBs (U373-MG and GB4), which

acutely reduced YAP/TAZ expression to levels of untransformed

control human astrocytes and impaired cell growth in soft

agar (Figures 2C and 2D). The results were similar in a breast

carcinoma model in which high WIP levels correlated with high

YAP/TAZ expression in mesenchymal phenotypes; WIP reduc-

tion decreased the TIC population (CD44High/CD24Low) (Figures

S2C and S2D).

To test for underlying molecular connections, we knocked

down WIP, YAP, or TAZ in GB4, GB5, and GB8 cells and

analyzed growth. WIP knockdown reduced YAP and TAZ levels

(Figure 2E), and knockdown of WIP, TAZ, or YAP decreased tu-

mor sphere growth and cell number (Figures 2F and 2G; data not

shown) and induced apoptosis in all three GBs (Figure 2H; data

not shown). In a confirmatory cell culture system, we verified that

WIP reduction affected both YAP/TAZ levels and nuclear locali-

zation (Figure S2E). To determine whether interference with WIP

expression had a similar inhibitory effect in vivo to that observed

in vitro, we transduced GB cells with shRNA against WIP or a

non-target control and injected the cells stereotactically into

the non-obese diabetic/severe combined immunodeficiency

(NOD/SCID) mouse striatum. WIP elimination impaired tumor

growth and caused a notable increase in mouse survival

(Figures 2I–2K). This WIP reduction effect was confirmed in pa-

tient samples. As shown by Kaplan-Meier analyses in two data-

sets for human GB, tumors with low or intermediate WIP levels

correlated with a significantly greater probability of increased

patient survival compared with tumors characterized by high

WIP expression (Figures 2L and 2M). To determine whether

this correlative expression of WIP and YAP/TAZ is restricted to

solid tumors, we analyzed hematological cancers with high

WIP levels and YAP/TAZ-independent growth (Figures S2F–

S2H; Cottini et al., 2014). In these models, in which YAP/TAZ is

not expressed, WIP elimination had no effect on tumor growth

(Figures S2I–S2K).

These data support an essential role for WIP in maintaining

YAP/TAZ-dependent TIC growth and phenotype, which is imper-

ative for in vivo solid tumor growth.

High WIP Levels Upregulate YAP/TAZ Expression
and Promote Tumor Growth and Stemness
We analyzedwhetherWIP overexpression affected the growth of

normal human cells. Lentiviral expression of WIP-GFP in primary

human astrocytes increased YAP/TAZ expression, enhanced

proliferative signals such as phospho extracellular signal-regu-

lated kinase (pERK), and potentiated the YAP/TAZ targets con-

nective tissue growth factor (CTGF) and caveolin; these signals

triggered tumor sphere formation and cell growth (Figures 3A–

3C; Figures S3A and 3SB). This WIP-GFP effect was similar in

normal MCF10A breast cells (data not shown). In the WIP-over-

expressing model, shRNA interference of WIP, YAP, or TAZ

greatly reduced growth capacity and proliferative marker

expression and triggered apoptosis (Figures 3A–3D).

WIP has several interaction regions: the WASP/neural

Wiskott Aldrich Syndrome protein (N-WASP)-binding domain,
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Figure 1. WIP Expression Correlates with Tumor Growth and Is Associated with the TIC Phenotype
(A) WIP mRNA is overexpressed in GB tumors compared with normal brain. Significant differences were calculated using Student’s t test.

(B) Western blot analysis of WIP and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as a control in a panel of extracts from human GB tumor tissue

compared with normal tissue (NT).

(C) Left: representative images of GB4, GB5, andGB8 cultured under stem conditions and showing high CD133 expression. Right: equivalent analysis of adherent

cultures in DMEM-10% FBS. Scale bars, 50 mm.

(D) Western blot analysis of WIP and GAPDH expression.

(E–G) Tumor sphere-forming ability of explants from GB patients.

(E) Representative confocal image ofWIP and Ki67 expression and DAPI nuclear staining in tumor spheres fromGB4 andGB8 (highWIP expression) andGB7 and

GB11 (low WIP expression). Scale bars, 50 mm.

(F and G) Number of spheres formed (F) and percentage of Ki67+ cells (G).

(H) Western blot analysis of WIP and GAPDH in MDA-MB-231 cells transduced with two specific lentiviral shRNAs against WIP.

(I) Representative images of growth under stem conditions (top; scale bars, 50 mm) and anchorage-independent growth conditions (soft agar, bottom).

(J and K) Number of spheres formed (J) and colony number in soft agar (K).

(F, G, J, and K) Data are shown as mean ± SEM (n = 3).
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Figure 2. WIP Requirement for In Vitro and In Vivo Tumor Growth Is YAP/TAZ-Dependent
(A) Western blot analysis of YAP/TAZ, WIP, and GAPDH control in a panel of extracts from human GB tumor tissue compared with NT.

(B) Quantification of the correlation between YAP or TAZ versus WIP expression shown in (A).

(C)Western blot analysis ofWIP and YAP/TAZ in extracts from astrocytes and fromU373-MG andGB4 explant cells transduced with control shRNA (shcontrol) or

against WIP (shWIP66), all cultured under stem conditions.

(D) Representative images of shcontrol- or shWIP66-transduced U373-MG and GB4 explant cells grown in soft agar (7 days).

(E) Western blot analysis of YAP/TAZ, WIP, and GAPDH in GB4, GB5, and GB8 samples knocked down for WIP, TAZ, or control.

(F–H) Quantification of the number of spheres (F), cells (trypan blue exclusion) (G), and cell death (annexin V/7-aminoactinomycin D [7AAD] by flow cytometry) (H)

generated by WIP, TAZ, or control knockdown as in (E). Data are shown as mean ± SEM (n = 3).

(legend continued on next page)
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the actin-binding domain, and a proline-rich region that binds

cortactin, profilin, the actin-binding protein (Abp-1), as well as

the adaptors Nck and CrkL (Antón et al., 2007). To determine

whether the complete protein is necessary for WIP transforma-

tion capacity, we transduced human astrocytes with lentiviruses

that encode three WIP constructs: full-length, WIP-DNBD (lack-

ing the Nck-binding domain), or WIP-D42-53 (lacking the actin-

binding domain) (Figure 3E; Garcı́a et al., 2012). Determination

of tumor sphere number and CD133 levels showed that only

the full-length version enhanced cell growth and stemness (Fig-

ures 3E–3G; Figures S3C and S3D).

WIP Regulates Cell Invasion in a YAP/TAZ-Dependent
Manner
Two striking features of TICs are their plasticity and their

enhanced metastatic potential. We therefore used highly meta-

static MDA-MB-231 cells (Muller et al., 2009) to test whether

WIP regulates their invasiveness.MDA-MB-231cells havea large

proportion of TICs, as shown by the number of invasive Matrigel-

3D structures, which have high nuclear YAP/TAZ levels (Figures

4A and 4B). Elimination of WIP in these cells suppressed forma-

tion of these invasive structures nearly completely and appeared

to impair growth (Figures 4A and 4B). In a complementary

approach, we tested whether WIP overexpression stimulates

these features in the low metastatic MDA-MB-468 cell line. We

used GFP-, WIP-GFP-, WIP-DNBD-, and WIP-D42-53-encoding

lentiviruses. As seen in primary astrocytes, only full-length WIP

increased TAZ levels and stemness in MDA-MB-468 cells (Fig-

ures 4C–4E). In addition, overexpressionof full-lengthWIPgreatly

increased MDA-MB-468 cell invasiveness (Figures 4F and 4G).

To link this WIP function with YAP/TAZ, we knocked down

WIP, YAP, or TAZ in WIP-overexpressing breast tumor cells;

elimination of any of these proteins reestablished their naturally

low cell invasiveness (Figures 4H and 4I). The effects generated

by WIP overexpression, including increased proliferation, sur-

vival, stemness, and invasiveness, might thus be coordinated.

We confirmed thatWIP increased cell proliferation and promoted

YAP/TAZ nuclear transit specifically in invasive structures, which

corroborated coordination of these processes (Figures S4A–

S4C). In parallel, WIP overexpression suppressed the sponta-

neous basal cell death that normally occurs in the fraction of

non-invasive structures (Figures S4D and S4E). These prolifera-

tive processes are linked to increased invasiveness, essential for

metastasis generation (Shibue et al., 2013), as confirmed by our

findings.

WIP Controls YAP/TAZ Stability Independently of the
Hippo Pathway and Actin Polymerization
Our results strongly suggested that WIP expression upregulates

YAP/TAZ, whereas its downregulation decreases YAP/TAZ. To
(I) Kaplan-Meier survival curves of mice orthotopically implanted in the brain wi

Log-rank test; p < 10�4.

(J) Western blot analysis of WIP, YAP/TAZ, and GAPDH control.

(K) Representative images of brain with H&E staining of the experiment describe

(L) Survival curves in the Freije dataset. Patients were stratified in two equal grou

(M) Survival curves in the TCGAGBdataset. Patients were stratified in three group

were calculated using the log rank-test.
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analyze the mechanism that underlies this regulation, we tested

whether WIP modifies YAP/TAZ mRNA expression in WIP

shRNA-transduced GB4, GB5, and GB8 cells. qRT-PCR data

showed no notable differences in TAZmRNA levels in these cells

(Figure S5A). Because YAP/TAZ is degraded by the proteasome

(Liu et al., 2010), we tested whether WIP uses this system to

degrade YAP/TAZ. WIP knockdown GB4, GB5, and GB8 cells

treated with the proteasome inhibitor MG132 showed significant

recovery of YAP/TAZ levels (Figures 5A and 5B). We thus spec-

ulated that WIP controls the proteasome-mediated degradation

system. Using a degradation-insensitive TAZ mutant (TAZ-

S311A) (Liu et al., 2010), we observed recovery of all processes

otherwise affected by WIP elimination, including proliferation,

stemness, and invasiveness (Figures 5C–5I; Figure S5B). This

mutant also rescued the decrease in TEA domain (TEAD)- and

b-catenin-dependent transcription produced by WIP reduction

(Figures S5C and S5D).

In the Hippo system, an Mst1/2- and Lats1/2-mediated kinase

cascade phosphorylates YAP/TAZ, tagging this complex for

proteasome degradation. Actin controls YAP/TAZ stability and

nuclear localization, although the mechanism is not fully under-

stood (Piccolo et al., 2014). Although the Hippo pathway has

been established as the main link between actin polymerization

and YAP/TAZ transcriptional activity (Aragona et al., 2013;

Dupont et al., 2011), an alternative Hippo-independent mecha-

nism could explain YAP/TAZ regulation by actin polymerization

in some other cancer-related models (Dupont et al., 2011;

Feng et al., 2014). To define the mechanism by which WIP regu-

lates YAP/TAZ levels, we analyzed whether actin polymerization

or depolymerization affect YAP/TAZ stability in the absence of

WIP. MDA-MB-231 cells transduced with shRNAs to WIP or a

control were incubated with latrunculin A1 (LatA1), a filamentous

actin (F-actin)-depolymerizing agent, or jasplakinolide, an

F-actin stabilizer. Neither treatment re-established YAP/TAZ

levels after degradation by WIP knockdown (Figure 5J) or

affected YAP/TAZ nuclear transit (Figure 5K).

We also tested whether increased Hippo activity modifies

WIP-mediated YAP/TAZ stability. Human GFP- or GFP-WIP-ex-

pressing astrocytes were transduced with lentiviruses encoding

Lats1, Mst2, or both. Despite increased YAP phosphorylation,

WIP-GFP-expressing astrocytes maintained YAP/TAZ stability

and sphere-forming capacity under stem culture conditions

when the Hippo pathway was hyperactivated by Mst2/Lats1

(Hao et al., 2008; Figures S5E and S5F). In a complementary

experiment, we observed that, in the absence of WIP, Lats1/2

elimination did not rescue YAP/TAZ stability or cell growth (Fig-

ures S5G and S5H). Finally, we used a mutant version of YAP

(S5A) in which all Lats1 phosphorylation sites are mutated to

alanine to generate a stable, active protein. Astrocytes were in-

fected with YAP wild-type (WT) or YAP-S5A lentivirus and then
th GB cells transduced with a lentivirus encoding shcontrol or shWIP (n = 6).

d in (I).

ps using the median WIP expression value as the cutoff point.

s usingWIP Z score values. Significance differences in survival between groups

0



Figure 3. Overexpression of Full-Length WIP Increases Proliferation, and WIP Is Necessary to Establish the Epithelial-Mesenchymal

Transition by the Control Exercised over YAP/TAZ

(A–D) Astrocytes expressing GFP or WIP-GFP and transduced with a lentivirus encoding WIP-, TAZ-, YAP-, or control-specific shRNA were cultured as tumor

spheres (stem conditions, 6 days).

(A) Western blot analysis of YAP/TAZ, CTGF, CAV1, pERK, ERK, WIP-GFP, and GAPDH levels.

(B) Representative image of sphere growth. Scale bars, 50 mm.

(C and D) Quantification of sphere number (C) and cell death (D) measured by annexin V/7AAD staining.

(E–G) Astrocytes were transduced with a lentivirus encoding GFP, full-length WIP (WIP-GFP), WIP lacking the Nck binding site (WIP-DNCK), or the actin binding

site (WIP-D42-53).

(E) Western blot analysis of YAP/TAZ, CTGF, pERK, ERK, WIP-GFP, and GAPDH expression.

(F) Percentage of CD133+ cells by flow cytometry.

(G) Number of spheres.

(C, D, F, and G) Data are shown as mean ± SEM (n = 3).
transduced with shRNAs against WIP, TAZ, or a non-target

control. YAP-S5A increased growth and sphere generation by

control cells, whereas WIP or TAZ elimination severely impeded

this effect (Figures S5I and S5J), suggesting that the YAP/TAZ
CELREP
level does not depend on the Hippo pathway-mediated phos-

phorylation in cells with a reduced WIP level. All of our western

blot data suggest that YAP and TAZ cooperate to form a com-

plex essential for stemness (Figures 2E and 3A; Figures S3A
Cell Reports 17, 1962–1977, November 15, 2016 1967
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Figure 4. WIP Increases Cell Survival and Proliferation by Promoting the TIC Phenotype and Drives YAP/TAZ-Dependent Cell Invasion

(A) Top: representative images of Matrigel-seeded MDA-MB-231 cells knocked down for WIP or control. Scale bars, 25 mm. Bottom: percentage of invasive and

non-invasive structures (at least 100 individual structures in each of three independent experiments, relative to shcontrol).

(B) Confocal images of the staining for YAP/TAZ (green), nuclei (DAPI, blue), F-actin (phalloidin, red), and integrin a6 (cyan) of invasive and non-invasive structures

in 3D Matrigel as described in (A). Scale bars, 25 mm.

(legend continued on next page)
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and S5I) and that, although they might replace each other

partially, there is a minimum threshold of each for activity. These

results indicate that theWIP-mediated stability of YAP/TAZ is not

compensated by actin stabilization, nor is it sensitive to Hippo

activation.

WIP Regulates the Endocytosis and/or Multivesicular
System to Control YAP/TAZ Levels
Cancer cells often bear multiple genetic alterations that compli-

cate the description of oncogenic pathways. To overcome this

drawback and to specifically evaluate WIP-transforming

capacity, we overexpressed WIP-GFP in normal primary human

astrocytes, which have an unmodified genetic background. WIP

overexpression reduced cell death of these astrocytes (control

WIP-GFP; Figure 6A). To identify the signaling pathways

involved, we sought molecules able to reverse WIP-mediated

survival. We quantified cell death of primary astrocytes incu-

bated with a panel of inhibitors of different protein activities (ki-

nases, GTPases, actin regulators, and ionophores). Inhibitors

of WIP-related proteins had no effect, including inhibitors

of N-WASP (wiskostatin, 187-1), Arp2/3 (CK666 and CK869)

and Cdc42 (casin) (Figure 6A). In contrast, inhibitors of

Rac (NSC23766), p21-activated kinase (PAK; IPA-3), formins

(SMIFH2), and the Na+/H+ exchanger (ethyl-isopropyl amiloride

[EIPA]) as well as monovalent cation ionophores (monensin,

nigericin, and salynomycin) were specifically cytotoxic for

WIP-overexpressing astrocytes (red star, Figure 6A). To study

the mechanisms involved in WIP-transforming ability, we

analyzed EIPA and ionophore capacity to inhibit the endocytic/

endosomal system and to specifically kill TICs (Boucrot et al.,

2015; Gupta et al., 2009). We validated the effect of these com-

pounds in the GB model, in which they destabilized YAP/TAZ

and inhibited cell growth capacity and stemness (Figures S6A

and S6B). In MDA-MB-231 cells, WIP elimination prevented

endocytosis-mediated transferrin uptake (Figure 6B), and, in

these cells and GB4, it disturbed endosomal function, as

analyzed by acridine orange staining, cathepsin activity (Magic

Red), and endosomal pH (LysoSensor) (Figures S6C–S6E).

These results suggest that WIP-transforming ability acts through

Rac/PAK/formin activities and affects endosomal function.

WIP Contributes to b-catenin and Wnt Signaling
by Sequestering the Degradation Complex in MVBs
Because our data indicated that WIP can regulate endocytosis,

and recent reports show that YAP/TAZ is a Wnt signaling target

(Azzolin et al., 2012, 2014), we hypothesized that WIP is directly

involved in Wnt signaling. We used two strategies to test this hy-

pothesis. We analyzed b-catenin activation and then measured
(C–G) MDA-MB-468 cells transduced with a lentivirus encoding GFP, WIP-GFP

conditions (6 days).

(C) Western blot analysis of cell extracts for YAP/TAZ, CD44, CTGF, WIP-GFP, a

(D) Percentage of CD44High/CD24Low cells by flow cytometry.

(E) Number of spheres formed.

(F and G) Representative image of invasive or non-invasive structure formation in

(H and I) LV-GFP- or LV-WIP-GFP-transduced MDA-MB-468 cells were infected

images after 3D Matrigel culture (H, scale bars, 25 mm) and the percentage of in

(D, E, G, and I) Data are shown as mean ± SEM (n R 3).

CELREP
b-catenin-dependent transcription in the TOP/FOP system.

WIP elimination reduced levels of active b-catenin (ABC-b-cate-

nin) as well as of its cyclin D1 target and of TOP/FOP-dependent

transcription (Figures 6C and 6D). Elimination of WIP, b-catenin,

or TAZ in MDA-MB-231 cells similarly impaired TIC growth (Fig-

ures S6F and S6G), which suggests that all three proteins are

common elements of a shared pathway.

To unambiguously establishWIP involvement inWnt signaling,

we tested whether the Wnt3a ligand stabilized YAP/TAZ in

WIP-GFP-expressing astrocytes. In ligand-stimulated cells,

WIP specifically enhanced YAP/TAZ stability (Figure 6E).

Conversely, we tested the effect ofWIP reduction in combination

with mutant b-catenin and APC, both of which impede b-catenin

degradation by the APC/axin/GSK3 destruction complex (Azzo-

lin et al., 2012, 2014). In WIP knockdown cells, b-catenin or APC

mutants impeded YAP/TAZ degradation, both when they were

overexpressed exogenously (Figure S6H) or when APC was

mutated endogenously in colon carcinoma HT29, SW480, and

SW620 cells (Figure S6I). In these carcinomas, WIP elimination

produced no changes in cell growth (Figure S6J). These findings

provide evidence that the b-catenin destruction complex could

be WIP-regulated.

A possible link among the various systems affected by WIP

was recently reported for Wnt signaling, in which APC/axin/

GSK3 is sequestered in MVBs after Wnt ligand stimulation and,

thus, prevents b-catenin degradation (Taelman et al., 2010; Vi-

nyoles et al., 2014). To determine whether WIP controls MVB

sequestration of the destruction complex, we analyzed WIP

localization by immunostaining and found that WIP co-distrib-

uted with CD63, a component of MVB intraluminal vesicles (Fig-

ure 6F). In addition, a proteinase K protection assay showed that

WIP elimination greatly reduced axin and GSK3 levels within

MVBs (Figure 6G); this supports a model in which WIP regulates

the subcellular distribution of the complex as well as its subse-

quent degradative activity. In a confirmatory experiment, we

analyzed GSK3 and YAP/TAZ subcellular localization in control

or WIP knockdown cells and observed that GSK3 co-distributed

with LysoTracker staining in cells with high nuclear YAP/TAZ

levels; this pattern was severely impaired in the absence of

WIP (Figure 6H).

We used two additional approaches to confirm that WIP

mediates APC/axin/GSK3 sequestration by MVBs: one using

the MVB-specific proteins Rab5 and Hrs and another in which

we increased APC/axin/GSK3 sequestration using the lysosome

inhibitors bafilomycin and chloroquine. Overexpression of

exogenous active Rab5QL and Hrs rescued the YAP/TAZ

levels destabilized by WIP knockdown (Figure 6I), whereas

neither bafilomycin nor chloroquine rescued YAP/TAZ levels
, or the deletion mutants WIP-DNBD and WIP-D42-53, cultured under stem

nd GAPDH expression.

3D Matrigel (F) (scale bars, 25 mm) and quantification of these structures (G).

with lentiviral shcontrol, shWIP66, shTAZ, or shYAP. Shown are representative

vasive structures formed (I).
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Figure 5. WIP Regulates TAZ Stability by Controlling Its Degradation by the Proteasome Independently of Actin Dynamics and Hippo Activity

(A and B) Western blot analysis of b-catenin, YAP, TAZ, WIP, and GAPDH expression in GB4, GB5, and GB8 cells knocked down for WIP or control, alone or with

proteasome inhibitor (MG132, 10 mM) (A); quantification of GB5 data is shown in (B).

(C–I) MDA-MB-231 cells infected with lentivirus shcontrol or shWIP66 and transfected with pcDNA, TAZ-WT, or TAZ-S311A (a degradation-insensitive mutant).

(C) Western blot analysis of WIP, TAZ, and GAPDH expression.

(legend continued on next page)
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(Figures S6K and S6L). These data suggest that this WIP-medi-

ated process is controlled upstream of APC/axin/GSK3

sequestration.

WIP Stabilization of YAP/TAZ Is Rac/PAK- and
Mammalian Diaphanous-Related-Dependent
Our screening experiment showed that Rac, PAK, and formin

inhibitors had a clear effect on WIP-induced cell viability (Fig-

ure 6A). An in-depth study of GTPase function in our model of

YAP/TAZ stabilization by WIP showed that the Rac inhibitor

(NSC23766) reversed WIP ability to stabilize YAP/TAZ, which

was unaffected by Cdc42 (casin) or RhoA (Y16) inhibitors in as-

trocytes (Figure S7A) andGB (Figures S7B and S7C). In contrast,

WIP knockdown did not destabilize YAP/TAZ in the presence

of a constitutively active Rac mutant (RAC-V12) (Figure S7D).

In GB, WIP knockdown also reduced the phosphorylation

levels of PAK (Figure S7E), a Rac substrate in many processes.

All of these results demonstrate a pivotal role for Rac in WIP-

mediated cell survival that is consistent with studies showing

that Rac is essential for tumor growth (Feng et al., 2011; Man

et al., 2014).

We analyzed two other inhibitors identified by our screening,

IPA-3 (PAK1-specific) and SMIFH2 (formins). Under stem culture

conditions, IPA-3, SMIFH2, or LatA1 greatly reduced WIP-GFP

astrocyte growth, with similar results for GB (Figures 7A and

7B; Figures S7F–S7H). Biochemical analysis of extracts from

these cells showed that WIP expression initially increased TAZ,

which was subsequently reduced by SMIFH2 and more severely

by IPA-3 (Figure 7A; Figures S7F–S7H). The results for both in-

hibitors were similar in MDA-MB-231-purified TICs (Figures S7I

and S7J), which verified WIP involvement in TIC maintenance

and cancer pathology. Immunofluorescence analysis showed a

clear reduction (>50%) in YAP/TAZ-positive nuclei after IPA-3,

SMIFH2, or LatA1 treatment (Figures 7C and 7D). These inhibi-

tors also reduced the TEAD- and b-catenin-mediated transcrip-

tion induced by WIP overexpression (Figures 7E and 7F).

Although our previous findings showed that inhibition of actin

polymerization did not result in loss of YAP/TAZ stability (Fig-

ure 5J), we found that LatA1 treatment impaired YAP/TAZ nu-

clear transit as well as cell growth (Figures 7A–7D; Figures S7I

and S7J). Another actin polymerization inhibitor, cytochalasin,

gave similar results (data not shown).

To confirm that the mammalian diaphanous-related formin

(mDia) and PAK have a major role in the oncogenic function

of WIP, we transduced cells with a lentivirus bearing GFP,

mDia2, or an active version of PAK (PAK-constitutively active

[PAK-CA]) in cells knocked down for WIP or in controls and

analyzed tumor cell number and growth. Cell growth hampered

by WIP knockdown was rescued by mDia2 or PAK-CA expres-
(D–F) Representative images of secondary sphere formation (D; scale bars, 50 m

(G) Percentage of CD44High/CD24Low population as determined by flow cytomet

(H and I) Representative images of MDA-MB-231 cells grown in 3D Matrigel (H;

(J)Western blot analysis of pYAP, YAP/TAZ,WIP, andGAPDH inMDA-MB-231 ce

(Jasp, 0.5 mM) for increasing times (up to 120 min).

(K) Confocal images of the staining for nuclei (DAPI, blue), YAP/TAZ (green), and F

Scale bars, 20 mm.

(B, E, G, I, and K) Data are shown as mean ± SEM (n = 3).

CELREP
sion and more so by combined mDia2/PAK-CA (Figures 7G and

7H). A parallel western blot analysis confirmed that mDia2 or

PAK-CA recover TAZ levels reduced by WIP elimination (Fig-

ure 7G). To extend these studies to the APC/axin/GSK-3

sequestration model, we cultured MDA-MB-231 cells alone or

with IPA-3 or SMIFH2. A proteinase K protection assay showed

impaired GSK3 and axin sequestration, and GSK3 did not

co-localize with the LysoTracker marker (Figures 7I and 7J).

These data strongly suggest that WIP controls TAZ levels

by an mDia2- and Rac/PAK-dependent vesicle protection

mechanism.

Our findings show an unreported WIP function that coordi-

nates cell processes such as endocytosis, vesicular regulation,

proliferation, stemness, and invasiveness, leading to the regula-

tion of YAP/TAZ degradation.

DISCUSSION

WIP Is Associated with Tumor Growth and Stem
Phenotype
The discovery of stemness in a small cell population within a

tumor led to the development of new tumor paradigms that

include heterogeneity, asymmetric growth, and the ability to

induce new tumors or metastases (Valastyan and Weinberg,

2011). This finding has allowed better understanding of cancer

pathology, although the signals that promote establishment of

these tumors remain to be addressed. Here we show that WIP

regulates the endocytic/endosomal system, inducing sequestra-

tion of the b-catenin destruction complex to stabilize YAP/TAZ

and b-catenin.

WIP participates in many cellular processes, some of which

are relevant in cancer, such as migration and invadopodium for-

mation (Garcı́a et al., 2014). In yeast, it is also involved in endo-

cytosis and cell growth (Vaduva et al., 1999), although WIP

involvement in mammalian cell growth and/or proliferation has

not been studied in detail. The full-length structure of WIP is

necessary to promote proliferation, stemness, and transforma-

tion capacity because the WIP deletion mutants tested (Nck or

actin binding sites) do not have the same effect as the full protein,

as was also found in other mutants, such as deletion of N-WASP

or cortactin binding sites (data not shown). We therefore specu-

late that WIP acts as a scaffold for various protein complexes

that control the endocytic/endosomal system. Our results

show that WIP is clearly involved in cell growth and is also

directly associated with cancer pathology, as interpreted from

the close relationship between WIP expression and basic prolif-

eration markers such as MAPK. It is also one of the few proteins

associated with the actin cytoskeleton that have been implicated

in tumorigenesis and TIC growth.
m), number of secondary spheres (E), and colonies in soft agar (F).

ry.

6 days; scale bars, 25 mm) and their quantification (I).

lls knocked down forWIP or control, alone or with LatA1 (1 mM) or jasplakinolide

-actin (phalloidin, red) of cells treated for 60min as in (J) and their quantification.
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Figure 6. WIP Is Located in Endosomal Compartments and Requires the APC/Axin/b-GSK3 Destruction Complex to Degrade YAP/TAZ

(A) Screening for synthetic lethal compounds by measuring apoptosis induction (annexin V/7AAD staining) in GFP- or WIP-GFP-overexpressing astrocytes

cultured under stem conditions and treated with a panel of inhibitors.

(B) Flow cytometry measurement of Alexa 647-transferrin uptake byMDA-MB-231 cells transduced with an shcontrol- or shWIP-encoding lentivirus and cultured

under stem conditions.

(C) Western blot analysis of b-catenin, ABC-b-catenin, TAZ, cyclin D1, CTGF, WIP, and GAPDH in MDA-MB-231 cells transduced as in (B).

(D) Quantification of b-catenin-dependent transcription measured by TOP/FOP-GFP in flow cytometry in MDA-MB-231 cells expressing GFP under TOP or FOP

sequence control and transduced as in (B).

(E) Western blot analysis of TAZ stabilization in GFP-expressing (top) or WIP-GFP-expressing (bottom) astrocytes treated with EGF (100 ng/ml) or Wnt3A

(80 ng/ml) at the times indicated.

(legend continued on next page)
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WIP-Mediated YAP/TAZ Stabilization Does Not Involve
Actin Cytoskeleton Stability or Activation of the Hippo
Pathway
The Hippo pathway and its regulation of YAP/TAZ are found in

development, tissue homeostasis, and cancer. This pathway is

regulated principally by actin polymerization, which directly af-

fects YAP/TAZ-mediated transcription (Piccolo et al., 2014).

WIP can promote the nuclear transit of myocardin-related tran-

scription factor-serum response factor (MRTF-SRF), which is

regulated by actin polymerization (Ramesh et al., 2014). Because

both YAP/TAZ and MRTF-SRF transcription factors depend on

actin polymerization to reach the nucleus, we considered the

possibility that WIP regulates YAP/TAZ intracellular distribution.

Our results indicate that WIP elimination induces YAP/TAZ

proteolysis through its natural degradation route, the protea-

some; a degradation-insensitive TAZmutant was able to reverse

the phenotype caused byWIP knockdown. In the classical Hippo

pathway, Hippo-mediated YAP/TAZ regulation mechanisms

control the number of phosphorylations that determine YAP/TAZ

binding to actin, angiomotin (AMOT), and/or 14.3.3; this

prevents YAP/TAZ nuclear transit and/or predisposition to

degradation (Piccolo et al., 2014). In many studies, it is nonethe-

less difficult to discern how much YAP/TAZ transcription control

is mediated by its degradation or because of impairment of its

nuclear traffic.

YAP/TAZ is activated by mechanotransduction in an actin-

dependent fashion, as indicated by the use of actin polyme-

rization inhibitors such as LatA, or low-adhesion surfaces, or

inhibitors of Rho, Rho- associated coiled-coil containing protein

kinase (ROCK), or myosin, all of which impair nuclear YAP/TAZ

transit (Dupont et al., 2011). In the absence of adhesion, YAP/

TAZ is regulated by Hippo, which impairs nuclear transit and

subsequent transcription (Zhao et al., 2012). Some of these re-

ported data indirectly evaluated YAP/TAZ stability by nuclear

transit or transcriptional capacity, while it strictly correlated

with actin polymerization; results might be induced by AMOT-

or 14.3.3-mediated YAP/TAZ sequestration in the cytosol, which

would not necessarily affect complex stability. This might also be

the case for actin cytoskeleton regulators such as cofilin,

capping protein Z disk (CapZ), or gelsolin (Aragona et al.,

2013). Although important in physiological regulation of the

Hippo-YAP/TAZ pathway, these mechanisms do not explain

the YAP/TAZ increase in various tumor types such as high-

grade breast carcinomas (Cordenonsi et al., 2011) or GB

(Bhat et al., 2011). In the TIC model, we found that YAP/TAZ

nuclear transit is blocked by actin polymerization inhibitors

(LatA or cytochalasin); however, the stability of this complex is

unimpaired.
(F) Confocal images of MDA-MB-231 cells transduced with GFP- or WIP-GFP-en

Scale bars, 10 mm. Inset: magnification of the boxed area and arrows; codistribu

(G) Proteinase K protection assay of MDA-MB-231 cells knocked down for WIP o

a/b-GSK3, and caveolin.

(H) Representative confocal images of MDA-MB-231 cells knocked down for W

LysoTracker (red), anti-bGSK3 (green), and DAPI (blue). Scale bars, 10 mm.

(I) Western blot analysis of YAP/TAZ and WIP in cells knocked down for WIP and

respective control plasmids, pDsRedC1 and pCS2.

(A, B, and D) Data are shown as mean ± SEM (n = 3).
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Our data show a correlation between high WIP levels and

WIP-induced YAP/TAZ stability, which leads to increased tran-

scription, proliferation, stemness, and invasiveness. Because

WIP knockdown did not induce an increase in Lats1 (Hippo)-

dependent YAP/TAZ phosphorylation, we speculate that WIP

removal does not activate the Hippo pathway. WIP thus regu-

lates YAP/TAZ stability via a mechanism in which actin polymer-

ization and the Hippo pathway are secondary effectors. It is

tantalizing to consider that actin polymerization has an essential

role in YAP/TAZ nuclear transit and/or cytoplasmic retention.

WIP Regulates the Endocytic/Endosomal System
and Thus Induces Destruction Complex Sequestration
in MVBs
Although endocytosis was initially only considered a mechanism

to limit signal transduction, the endocytic/endosomal pathway

was recently shown to have other roles (Dobrowolski and De

Robertis, 2011) in generating a second signaling wave that can

increase, disable, or extend signals from a receptor activated

in themembrane. For b-catenin transcription in theWnt pathway,

the b-catenin degradation complex must be sequestered.

Taelman et al. (2010) showed that sequestration of this destruc-

tion complex by the MVB system inhibits b-catenin degradation.

In the context of Wnt stimulation, the same APC/axin/GSK3

destruction complex is responsible for stabilizing YAP/TAZ

transcription factors, whose synergy promotes gain of tumor

function (Azzolin et al., 2012, 2014).

In our model, WIP elimination also affects b-catenin stability

and transcription, which parallel the loss of YAP/TAZ stability.

Our findings for b-catenin suggested that the formation and/or

function of the destruction complex are affected by lack of

WIP. In axin1 immunoprecipitation assays, formation of the

APC/axin/GSK3 destruction complex was unaffected by WIP

knockdown (data not shown). After WIP elimination, b-catenin

and APC mutants controlled the destruction complex by

reversing the effect of YAP/TAZ degradation.

We propose that much of YAP/TAZ stabilization is linked to

b-catenin regulation in situations of high WIP levels, as was

shown for Wnt. This raises some questions as to whether WIP

stabilizes tumor cells with high levels of only YAP/TAZ or b-cat-

enin transcription factors.

Using a model of WIP-overexpressing human primary

astrocytes, we evaluated a panel of specific inhibitors that

impaired the WIP effect on cell survival. A group of these

compounds shows WIP involvement in endocytosis; these

include the Na+/H+ exchanger inhibitor EIPA, which blocks

receptor endocytosis, and the Na+ ionophore monensin, which

affects the endocytosis/endosomal system. This finding was
coding lentiviruses, treated with saponin (5 min), and immunostained for CD63.

tion of WIP and CD63.

r control and analyzed by western blot for WIP, YAP/TAZ, EEA1, axin, bTrCP,

IP or control and treated with saponin (5 min), showing anti-YAP/TAZ (cyan),

transfected with Rab5QL (active) or Hrs-red fluorescent protein (RFP) or their
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Figure 7. WIP Stabilizes YAP/TAZ through PAK and mDia

(A–F) Analysis of astrocytes expressing GFP or expressing WIP-GFP with vehicle (control) or inhibitors of PAK (IPA-3, 10 mM), formins (SMIFH2, 30 mM), or actin

polymerization (LatA1, 1 mM).

(A) Western blot analysis of nestin, TAZ, WIP-GFP, and GAPDH.

(B) Representative images of sphere growth.

(C and D) Quantification of astrocytes showing nuclear YAP/TAZ localization (C) and confocal images (D).

(legend continued on next page)
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specifically corroborated by measuring transferrin receptor

internalization and validated by Wnt3a ligand induction of

YAP/TAZ stabilization. WIP co-distributed with CD63, found in

intraluminal vesicles of MVBs; we also observed that WIP elimi-

nation alters endosomal function and vesicular acidification.

These findings permit speculation that sequestration of the

APC/axin/GSK3 complex in the MVBs is impaired by the WIP

effect on the endosomal system; this is due to YAP/TAZ destabi-

lization generated by WIP knockdown, which can be rescued by

overexpression of Rab5QL or Hrs, specific regulators of MVB

sequestration.

We show that the K+ ionophores nigericin and salinomycin

(which are specifically toxic for breast TICs; Gupta et al.,

2009), monensin, and EIPA destabilize YAP/TAZ and, in parallel,

impair GB TIC growth. Based on these data, these ionophores

and the Na+/H+ exchanger inhibitor appear to have a common

effect on the endocytic/endosomal system by impairing

APC/axin/GSK3 complex sequestration and facilitating YAP/

TAZ and b-catenin degradation, thus inducing specific TIC

cytoxicity.

PI3K, Rac, and PAK were recently implicated in a newly re-

ported clathrin-independent system responsible for fast endo-

philin-mediated endocytosis (FEME) of receptors (Boucrot

et al., 2015). In addition, formins such as mDia assist membrane

receptor transit to caveola vesicles (Echarri et al., 2012). We pro-

pose that these proteins, Rac, PAK, and formin, be included in

the group of endocytic/endosomal system regulators that WIP

needs to coordinate vesicular systems, allow efficient sequestra-

tion of the APC/axin/GSK3 destruction complex, and promote

YAP/TAZ and b-catenin stability. The PI3K-Rac-Rab5 system

is necessary for endosomal-lysosomal system maturation and

for MVB formation, and we found that Rac-V12 or PAK-CA/

mDia2 overexpression rescues the phenotype generated by

lack of WIP.

All of these data strongly support the hypothesis that WIP ex-

erts powerful control on this segment of the Wnt pathway to

regulate YAP/TAZ and b-catenin stability through MVB

dynamics.

In summary, our results show that WIP drives a mechanism

that stimulates cells by rendering growth factor pathways more

efficient, enhancing the signaling from endocytosis of membrane

receptors to MVBs to increase their effect, and promoting YAP/

TAZ and b-catenin stability. These high YAP/TAZ levels, potenti-

ated by increased WIP levels, can intensify their transcription

factor capacity, which allows cells to coordinate key processes

in cancer progression, such as proliferation, stemness, and inva-

siveness. Based on amultistep tumorigenicmodel, we speculate
(E and F) Quantification by flow cytometry of TEAD-dependent (E) or b-catenin-d

(G and H) MDA-MB-231 cells knocked down for WIP or control and transduced

cultured under stem conditions.

(G) Western blot analysis of TAZ, FLAG-mDia2, PAK1, WIP, and GAPDH.

(H) Quantification of sphere number.

(I) Proteinase K protection assay of MDA-MB-231 cells treated with vehicle (DM

YAP/TAZ, EEA1, axin, b-TrCP, and a/b-GSK3.

(J) Representative confocal images of MDA-MB-231 cells incubated with vehicle

(red), permeabilized with saponin, and fixed with paraformaldehyde (PFA). Fixed

anti-bGSK3 codistribution. Scale bars, 10 mm.

(C, E, F, and H) Data are shown as mean ± SEM (n R 3).
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that inhibitors of theWIP pro-tumor function could have effective

therapeutic applications.

EXPERIMENTAL PROCEDURES

Survival Analyses

WIP gene expression and survival data from human GB tumors corresponding

to The Cancer Genome Atlas (TCGA) and Freije datasets were downloaded,

respectively, from the cBioPortal (http://www.cbioportal.org/) and GEO

databases (http://www.ncbi.nlm.nih.gov/gds) (GEO: GSE4412). Kaplan-Meier

survival curves were done following patient stratification usingWIP expression

values as described in the Supplemental Experimental Procedures.

Cell Culture, Reagents, and Plasmids

GB and cell lines were cultured, transfected, transduced, and/or infected as

described previously (Gargini et al., 2015). For complete details on plasmids,

reagents, or specific procedures, see the Supplemental Experimental

Procedures.

Lentiviral and Retroviral Vector Production and Infection

Lentiviral vectors were produced using reagents and protocols as reported

previously (Gargini et al., 2015). See the Supplemental Experimental Proced-

ures for specific details.

WIP Expression in Human GB Subtypes

Classification into classical, mesenchymal, neural, and proneural subtypes was

retrieved from the TCGA GB dataset (https://www.ncbi.nlm.nih.gov/pubmed/

24120142) together with WIP expression values. Differences in WIP expression

between mesenchymal and other groups was calculated using Student’s t test.

GB Collection and Intracranial Tumor Assay

Human GBs were kindly supplied by Dr. Izquierdo (Hospital Ramón y Cajal)

and derived from brain surgery biopsies of patients with the approval of the

hospital ethical committees and that of the Centro de Biologı́a Molecular

Severo Ochoa (CBMSO)-Universidad Autónoma de Madrid (UAM) (SAF

2009-07259, issue date February 26, 2009).

All mouse experiments were performed according to national and European

Union guidelines basically as described previously (Anido et al., 2010). The

protocol was approved by the Committee on the Ethics of Animal Experiments

of the UAM (SAF2012-39148-C03-01) and by the CBMSO institutional

Biosafety Committee. See the Supplemental Experimental Procedures for

further details.

Western Blots, Immunofluorescence Analysis, Flow Cytometry

Analysis, Cell Sorting, and Antibodies

Western blots, indirect immunofluorescence (monolayer, 2D, or 3D), flow cy-

tometry analysis, and cell sorting were performed as described previously

(Gargini et al., 2015). For complete details on immunostaining and antibodies,

see the Supplemental Experimental Procedures.

Quantitative Real-Time PCR Assays

Total RNA was prepared with the RNeasy kit (QIAGEN). See the Supplemental

Experimental Procedures for specific details and primers.
ependent (F) transcription.

with a GFP-, mDia2-, PAK1-CA-, or mDia2/PAK1-CA-encoding lentivirus and

SO, control), IPA-3 (10 mM), or SMIFH2 (30 mM) and western blot analysis of

(DMSO, control), IPA-3, or SMIFH2 as in (I), stained (5 min) with LysoTracker

cells were immunostained with anti-bGSK3. Arrows indicate LysoTracker and
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Statistical Analysis

Quantitative data, represented as mean ± SEM, were compared between

groups using two-tailed Student’s t test. Differences are presented with

statistical significance or p value (*p < 0.05; **p < 0.01; NS, not significant).

For correlation analysis between each protein, expression data were tested

by Pearson’s correlation coefficient (R2); p values are indicated in the figures.

For survival analyses, we used the Kaplan-Meier method and log-rank tests.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.celrep.2016.10.064.
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