12 research outputs found

    Characterization of sepsis inflammatory endotypes using circulatory proteins in patients with severe infection:a prospective cohort study

    Get PDF
    Background Sepsis is a heterogeneous syndrome due to a variable range of dysregulated processes in the host immune response. Efforts are made to stratify patients for personalized immune-based treatments and better prognostic prediction. Using gene expression data, different inflammatory profiles have been identified. However, it remains unknown whether these endotypes mirror inflammatory proteome profiling, which would be more feasible to assess in clinical practice. We aim to identify different inflammatory endotypes based on circulating proteins in a cohort of moderately ill patients with severe infection (Sepsis-2 criteria). Methods In this prospective study, 92 inflammatory plasma markers were profiled using a targeted proteome platform and compared between patients with severe infection (Sepsis-2 criteria) and healthy controls. To identify endotypes with different inflammatory profiles, we performed hierarchical clustering of patients based on the differentially expressed proteins, followed by clinical and demographic characterization of the observed endotypes. Results In a cohort of 167 patients with severe infection and 192 healthy individuals, we found 62 differentially expressed proteins. Inflammatory proteins such as TNFSF14, OSM, CCL23, IL-6, and HGF were upregulated, while TRANCE, DNER and SCF were downregulated in patients. Unsupervised clustering identified two different inflammatory profiles. One endotype showed significantly higher inflammatory protein abundance, and patients with this endotype were older and showed lower lymphocyte counts compared to the low inflammatory endotype. Conclusions By identifying endotypes based on inflammatory proteins in moderately ill patients with severe infection, our study suggests that inflammatory proteome profiling can be useful for patient stratification

    Genome-wide Analysis of STAT3-Mediated Transcription during Early Human Th17 Cell Differentiation

    Get PDF
    The development of therapeutic strategies to combat immune-associated diseases requires the molecular mechanisms of human Th17 cell differentiation to be fully identified and understood. To investigate transcriptional control of Th17 cell differentiation, we used primary human CD4+ T cells in small interfering RNA (siRNA)-mediated gene silencing and chromatin immunoprecipitation followed by massive parallel sequencing (ChIP-seq) to identify both the early direct and indirect targets of STAT3. The integrated dataset presented in this study confirms that STAT3 is critical for transcriptional regulation of early human Th17 cell differentiation. Additionally, we found that a number of SNPs from loci associated with immune-mediated disorders were located at sites where STAT3 binds to induce Th17 cell specification. Importantly, introduction of such SNPs alters STAT3 binding in DNA affinity precipitation assays. Overall, our study provides important insights for modulating Th17-mediated pathogenic immune responses in humans.</p

    Systematic Prioritization of Candidate Genes in Disease Loci Identifies TRAFD1 as a Master Regulator of IFN gamma Signaling in Celiac Disease

    Get PDF
    Celiac disease (CeD) is a complex T cell-mediated enteropathy induced by gluten. Although genome-wide association studies have identified numerous genomic regions associated with CeD, it is difficult to accurately pinpoint which genes in these loci are most likely to cause CeD. We used four different in silico approaches-Mendelian randomization inverse variance weighting, COLOC, LD overlap, and DEPICT-to integrate information gathered from a large transcriptomics dataset. This identified 118 prioritized genes across 50 CeD-associated regions. Co-expression and pathway analysis of these genes indicated an association with adaptive and innate cytokine signaling and T cell activation pathways. Fifty-one of these genes are targets of known drug compounds or likely druggable genes, suggesting that our methods can be used to pinpoint potential therapeutic targets. In addition, we detected 172 gene combinations that were affected by our CeD-prioritized genes in trans. Notably, 41 of these trans-mediated genes appear to be under control of one master regulator, TRAF-type zinc finger domain containing 1 (TRAFD1), and were found to be involved in interferon (IFN)gamma signaling and MHC I antigen processing/presentation. Finally, we performed in vitro experiments in a human monocytic cell line that validated the role of TRAFD1 as an immune regulator acting in trans. Our strategy confirmed the role of adaptive immunity in CeD and revealed a genetic link between CeD and IFN gamma signaling as well as with MHC I antigen processing, both major players of immune activation and CeD pathogenesis

    Genetics of celiac disease

    No full text
    New insights into the underlying molecular pathophysiology of celiac disease (CeD) over the last few years have been guided by major advances in the fields of genetics and genomics. The development and use of the Immunochip genotyping platform paved the way for the discovery of 39 non-HLA loci associated to CeD, and for follow-up functional genomics studies that pinpointed new disease genes, biological pathways and regulatory elements. By combining information from genetics with gene expression data, it has become clear that CeD is a disease with a dysregulated immune response, which can probably occur in a variety of immune cells. This type of information is crucial for our understanding of the disease and for providing leads for developing alternative therapies to the current gluten-free diet. In this review, we place these genetic findings in a wider context and suggest how they can assist the clinical care of CeD patients. (C) 2015 Elsevier Ltd. All rights reserved

    No association between gluten sensitivity and amyotrophic lateral sclerosis

    No full text
    To examine evidence for a role of gluten sensitivity (GS) or celiac disease (CD) in ALS etiology, we included participants from a population-based case-control study in The Netherlands between January 2006 and December 2015. We compared levels and seroprevalence of IgA antibodies to tissue transglutaminase 6 (TG6) in 359 ALS patients and 359 controls, and to transglutaminase 2 (TG2) and endomysium (EMA) in 199 ALS patients and 199 controls. Questionnaire data on 1829 ALS patients and 3920 controls were examined for CD or gluten-free diets (GFD). Genetic correlation and HLA allele frequencies were analyzed using two genome-wide association studies: one on ALS (12,577 cases, 23,475 controls), and one on CD (4533 cases, 10,750 controls). We found one patient with TG6, TG2 and EMA antibodies who had typical ALS and no symptoms of GS. TG6 antibody concentrations and positivity, CD prevalence and adherence to a GFD were similar in patients and controls (p > 0.66) and in these patients disease progression was compatible with typical ALS. CD and ALS were not found to be genetically correlated (p > 0.37). CD-associated HLA allele frequencies were similar in patients and controls (p > 0.28). In conclusion, we found no serological evidence for involvement of gluten-related antibodies in ALS etiology nor did we observe an association between CD and ALS in medical history or genetic data, indicating that there is no evidence in our data for an association between the two diseases. Hence, a role for a GFD in the ALS treatment seems unlikely

    Innate Immune Activity Is Detected Prior to Seroconversion in Children With HLA-Conferred Type 1 Diabetes Susceptibility

    Get PDF
    The insult leading to autoantibody development in children who will progress to develop type 1 diabetes (T1D) has remained elusive. To investigate the genes and molecular pathways in the pathogenesis of this disease, we performed genome-wide transcriptomics analysis on a unique series of prospective whole-blood RNA samples from at-risk children collected in the Finnish Type 1 Diabetes Prediction and Prevention study. We studied 28 autoantibody-positive children, out of which 22 progressed to clinical disease. Collectively, the samples covered the time span from before the development of autoantibodies (seroconversion) through the diagnosis of diabetes. Healthy control subjects matched for date and place of birth, sex, and HLA-DQB1 susceptibility were selected for each case. Additionally, we genotyped the study subjects with Immunochip to identify potential genetic variants associated with the observed transcriptional signatures. Genes and pathways related to innate immunity functions, such as the type 1 interferon (IFN) response, were active, and IFN response factors were identified as central mediators of the IFN-related transcriptional changes. Importantly, this signature was detected already before the T1D-associated autoantibodies were detected. Together, these data provide a unique resource for new hypotheses explaining T1D biology

    Systematic annotation of celiac disease loci refines pathological pathways and suggests a genetic explanation for increased interferon-gamma levels

    No full text
    Although genome-wide association studies and fine mapping have identified 39 non-HLA loci associated with celiac disease (CD), it is difficult to pinpoint the functional variants and susceptibility genes in these loci. We applied integrative approaches to annotate and prioritize functional single nucleotide polymorphisms (SNPs), genes and pathways affected in CD. CD-associated SNPs were intersected with regulatory elements categorized by the ENCODE project to prioritize functional variants, while results from cis-expression quantitative trait loci (eQTL) mapping in 1469 blood samples were combined with co-expression analyses to prioritize causative genes. To identify the key cell types involved in CD, we performed pathway analysis on RNA-sequencing data from different immune cell populations and on publicly available expression data on non-immune tissues. We discovered that CD SNPs are significantly enriched in B-cell-specific enhancer regions, suggesting that, besides T-cell processes, B-cell responses play a major role in CD. By combining eQTL and co-expression analyses, we prioritized 43 susceptibility genes in 36 loci. Pathway and tissue-specific expression analyses on these genes suggested enrichment of CD genes in the Th1, Th2 and Th17 pathways, but also predicted a role for four genes in the intestinal barrier function. We also discovered an intricate transcriptional connectivity between CD susceptibility genes and interferon-gamma, a key effector in CD, despite the absence of CD-associated SNPs in the IFNG locus. Using systems biology, we prioritized the CD-associated functional SNPs and genes. By highlighting a role for B cells in CD, which classically has been described as a T-cell-driven disease, we offer new insights into the mechanisms and pathways underlying CD

    A locus at 7p14.3 predisposes to refractory celiac disease progression from celiac disease

    No full text
    International audienceBackground Approximately 5% of patients with celiac disease (CeD) do not respond to a gluten-free diet and progress to refractory celiac disease (RCD), a severe progression that is characterized by infiltration of intraepithelial T lymphocytes. Patients with RCD type II (RCDII) show clonal expansions of intraepithelial T lymphocytes that result in a poor prognosis and a high mortality rate through development of aggressive enteropathy-associated T-cell lymphoma. It is not known whether genetic variations play a role in severe progression of CeD to RCDII. Patients and methods We performed the first genome-wide association study to identify the causal genes for RCDII and the molecular pathways perturbed in RCDII. The genome-wide association study was performed in 38 Dutch patients with RCDII, and the 15 independent top-associated single nucleotide polymorphism (SNP) variants (P<5x10(-5)) were replicated in 56 independent French and Dutch patients with RCDII. Results After replication, SNP rs2041570 on chromosome 7 was significantly associated with progression to RCDII (P=2.37x10(-8), odds ratio=2.36) but not with CeD susceptibility. SNP rs2041570 risk allele A was associated with lower levels of FAM188B expression in blood and small intestinal biopsies. Stratification of RCDII biopsies based on rs2041570 genotype showed differential expression of innate immune and antibacterial genes that are expressed in Paneth cells. Conclusion We have identified a novel SNP associated with the severe progression of CeD to RCDII. Our data suggest that genetic susceptibility to CeD might be distinct from the progression to RCDII and suggest a role for Paneth cells in RCDII progression

    A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans

    Get PDF
    As part of the Human Functional Genomics Project, which aims to understand the factors that determine the variability of immune responses, we investigated genetic variants affecting cytokine production in response to ex vivo stimulation in two independent cohorts of 500 and 200 healthy individuals. We demonstrate a strong impact of genetic heritability on cytokine production capacity after challenge with bacterial, fungal, viral, and non-microbial stimuli. In addition to 17 novel genome-wide significant cytokine QTLs (cQTLs), our study provides a comprehensive picture of the genetic variants that influence six different cytokines in whole blood, blood mononuclear cells, and macrophages. Important biological pathways that contain cytokine QTLs map to pattern recognition receptors (TLR1-6-10 cluster), cytokine and complement inhibitors, and the kallikrein system. The cytokine QTLs show enrichment for monocyte-specific enhancers, are more often located in regions under positive selection, and are significantly enriched among SNPs associated with infections and immune-mediated diseases
    corecore