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SUMMARY

As part of the Human Functional Genomics Project,
which aims to understand the factors that determine
the variability of immune responses, we investigated
genetic variants affecting cytokine production in
response to ex vivo stimulation in two independent
cohorts of 500 and 200 healthy individuals. We
demonstrate a strong impact of genetic heritability
on cytokine production capacity after challenge
with bacterial, fungal, viral, and non-microbial stimuli.
In addition to 17 novel genome-wide significant cyto-
kine QTLs (cQTLs), our study provides a comprehen-
sive picture of the genetic variants that influence six
different cytokines in whole blood, blood mononu-
clear cells, and macrophages. Important biological
pathways that contain cytokine QTLs map to pattern
recognition receptors (TLR1-6-10 cluster), cytokine
and complement inhibitors, and the kallikrein system.
The cytokine QTLs show enrichment for monocyte-
specific enhancers, are more often located in regions
under positive selection, and are significantly en-
riched among SNPs associated with infections and
immune-mediated diseases.

INTRODUCTION
The Human Functional Genomics Project (HFGP) is an initiative
that aims to identify the factors responsible for the variability

of immune responses in health and disease (http://www.

P

G} CrossMark

humanfunctionalgenomics.org). Within the HFGP, the 500-Hu-
man Functional Genomics (500FG) cohort focuses on gaining a
broader understanding of the variability in human cytokine re-
sponses. In a first study reported in this issue of Cell, we investi-
gated the role of environmental and non-genetic host factors for
cytokine responses (ter Horst et al., 2016). In the present study,
we investigate the role of genetic variation for individuals human
cytokine responses, while a third complementary study assessed
the impact of microbiome factors (Schirmer et al., 2016).

Many targeted candidate gene studies have demonstrated the
impact of specific genetic variants on immune responses, while
a recent study that assessed the genetics of lipopolysaccharide
(LPS)-induced cytokine responses by dendritic cells identified
several candidate genes (Lee et al., 2014). Furthermore,
genome-wide genetic studies have found genetic variants that
impact transcript abundance for immune genes (so-called
eQTLs [expression quantitative trait loci]) (Kumar et al., 2014a;
Fairfax et al., 2014; Lee et al., 2014), while genome-wide associ-
ation studies (GWASSs) have identified hundreds of genetic vari-
ants predisposing to the susceptibility to immune-mediated
diseases and/or their severity (Welter et al., 2014). However,
there have been no comprehensive genome-wide association
studies to investigate variation in cytokine production in humans
so far. As a proof of concept, we assessed the genetics of three
monocyte-derived cytokines (tumor necrosis factor o [TNF-o],
interleukin [IL]-1B, and IL-6) after stimulation with a few microbial
stimuli: we identified four genome-wide loci that influence
cytokine release (Li et al., 2016). This clearly demonstrated the
importance of genetic variation for cytokine production in hu-
mans, and we decided to pursue a more comprehensive
approach to reveal the most important genetic factors that influ-
ence cytokine responses.
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Figure 1. Study Overview

We collected blood samples from 500 healthy individuals in the 500FG cohort and isolated their DNA. This was hybridized on the HumanCoreExome SNP Chip to
provide genotype information on approximately 8 million SNPs. The blood was also used to perform a series of stimulation experiments with major human
pathogens and to profile the cytokines released in the serum (see STAR Methods). See also Figures S1 and S2.

Here, we describe the stimulation of three different cellular
systems (whole blood, peripheral blood mononuclear cells
[PBMCs], and macrophages) with a broad panel of bacterial,
fungal, viral, and non-microbial stimuli to induce cytokine pro-
duction, which was analyzed with approximately 8.0 million ge-
netic variants (SNPs). The discovery was performed in the
500FG cohort, and validation was performed in the 200FG
cohort. We were able to validate 17 new genome-wide significant
loci that represent cytokine QTLs (cQTLs), and we describe new
pathways for the modulation of cytokine responses in humans.

RESULTS

Overview of Cytokine Response Architecture

We assessed cytokine production capacity in the 500FG discov-
ery cohort in three cellular systems: whole-blood stimulations,
PBMC stimulations, and stimulation of monocyte-derived mac-
rophages. We used a comprehensive range of seven bacterial,
three fungal, one viral, four Toll-like receptor (TLR) ligands, and
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two non-microbial metabolic stimuli to assess three monocyte-
derived and three lymphocyte-derived cytokines (see Figure 1
for overview).

Significant increases in the levels of all cytokines were
observed in all stimulation systems compared to steady-state
levels (see also the related paper by Schirmer et al., 2016, for
the main bacterial and fungal stimuli, as well as Figure S1 for a
full description of all stimuli). Cytokines IL-6 and TNF-o. from
whole blood and PBMCs showed higher inter-individual variation
than production by macrophages (Figure S2), suggesting that
the in vitro differentiation of macrophages is a process that partly
overrides individual variation. In general, IL-6 showed a much
stronger inter-individual variation than any other cytokines
(p < 0.001), suggesting a much stronger impact of cell types
and/or genetic variation on IL-6 production than other cytokines.
These results were consistent with those we obtained from the
200FG cohort (data not shown).

Unsupervised clustering of the cytokine responses showed a
clear distinction between stimulations with bacteria, fungi, or
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Figure 2. The Cytokine Responses Are Organized around the Physiological Response toward Specific Pathogens

(A) The results from unsupervised hierarchical clustering of the cytokine responses in PBMCs induced by various pathogens and microbial ligands are shown.
Clustering was performed using Spearman’s correlation as the measure of similarity. Red indicates a strong positive correlation, whereas blue indicates a strong
negative correlation. Cluster 1 depicts the positive correlation between monocyte-induced cytokines (IL-6, IL-1B, and TNF-a) on stimulation of PBMCs for 24 hr.
Cluster 2 depicts the positive correlation among cytokines derived from T-helper cells (IL-17, IL-22, and IFN-v) on stimulation of PBMCs for 7 days. Cluster 3
depicts the strong correlation between influenza- and Cryptococcus-induced cytokines for both T cell- and monocyte-derived cytokines.

(B) The results from unsupervised hierarchical clustering of the cytokine responses in blood were compared with responses in PBMCs. The stimulation-cytokine
pairs that were available for both cell systems were chosen to perform unsupervised hierarchical clustering. Four different clusters indicate the pathogen-specific

clustering of cytokines. WB, whole blood.

viruses (Figure 2A). Correlations between the productions of
various cytokines were found mainly for stimulation with a certain
microbe rather than between cytokine productions induced by
different microbes, which suggests that immune responses are
organized to respond to a specific pathogen rather than through
a specific immune pathway. The clustering also revealed a poor
correlation between monocyte-derived- and T-helper-derived
cytokine responses (Figure 2A). This is surprising, as the differen-
tiation of naive T cells into Th1- or Th17-effector lymphocytes
is controlled by monocyte-derived cytokines. However, this
conclusion is also supported by our clustering analyses of
whole-blood stimulations (Figure 2B). An exception to these pat-
terns was the fungal Cryptococcus-induced cytokine responses,
in which the distinction between monocyte-derived- and T cell-
derived cytokines was weak. In addition, the Cryptococcus-
induced cytokines were more similar to cytokine responses
induced by influenza virus than to other fungi (Figure 2A).

To assess whether cell-based factors are the only factor deter-
mining variation in cytokine responses, or whether plasma-
derived factors can qualitatively modulate the responses, we
correlated specific responses in purified PBMCs versus whole-
blood stimulations (Figure 2B). Unsupervised clustering demon-
strated stronger correlations of responses in the two stimulation

systems, but we also found positive correlations between them
(Figure 2B). These findings suggest that, although intrinsic fac-
tors in the mononuclear cells mainly determine the cytokine
response, additional variation in cytokine production may also
be induced by other whole-blood components, such as neutro-
phils or plasma factors.

Contribution of Genetic Variation to How Cytokines
Respond to Pathogens

We observed that cytokines show higher inter-individual varia-
tion upon stimulation (Figure S2). Since a difference in cell-count
proportions can be an important factor influencing the amount
of cytokines produced, we tested whether cell-count differ-
ences determine inter-individual variation in cytokine levels.
For this, we obtained immune-cell-count data measured by
fluorescence-activated cell sorting (FACS) for total lymphocytes,
T cells, B cells, monocytes, and natural killer (NK) cells
from all 500FG individuals (Aguirre-Gamboa et al., 2016). We
observed weak correlations between cell counts and cytokine
levels (Figure S3A), suggesting a minor effect of cell-count differ-
ences on cytokine production capacity. We then estimated the
proportion of cytokine variance explained by genome-wide
SNPs for all cytokine measurements before and after correcting
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Figure 3. Proportion of the Estimated Cytokine Variance Explained by Genetic Factors
A summary of all the estimates of cytokine variance explained by genome-wide SNP data after age, gender, and cell-count correction is shown. The esti-

mates <25% are shown in gray, and the estimates >50% are shown in black.

See also Figures S6 and S7 and Table S1.

for age, gender, and cell counts (Figure 3; Figure S3B; Table S1)
using the GREML method (Yang et al., 2010).

In total, for around 70% of all the cytokine responses in
PBMCs, the genetic influence was considerably larger than pre-
viously reported (>25% of explained variance) (Brodin et al.,
2015). We found similar results when we estimated heritability
without correcting age, gender, and cell counts (Table S1). In
general, we found a higher explained variance for monocyte-
derived cytokines from genetic factors (>50% of explained
variance especially for IL-6 and IL1-B) than for T cell-derived cy-
tokines (Figure 3). Finding the strongest inter-individual variation
in IL-6 levels upon stimulation, in addition to the highest heritabil-
ity for IL-6 levels, indicates that there may be many genome-wide
significant QTLs for IL-6 in the context of infectious pressure. In
T cell-derived cytokines, we found a higher explained variance
for IL-17 from genetic factors. Although it may be expected
that the cytokine production capacity is affected by genetic fac-
tors, we observed that the estimated explained variance due to
genetic factors differed for the stimulation by the various micro-
organisms and for the individual cytokines studied. This finding
indicates there are genetic variations that may be strongly regu-
lating the cytokine production in response to certain pathogens.

Identifying Genome-wide Genetic Variations Affecting
Cytokine Production in Response to Pathogens

To identify the most significant genetic loci that determine cyto-
kine levels upon stimulation, we mapped cQTLs using genome-
wide SNP genotypes. After correcting for age, gender, and cell
counts, we identified 18 genome-wide (p <5 x 1078 significant
lead SNPs in 17 independent loci (Figures 4A and 4B). These
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include seven independent QTLs for IL-6, three independent
QTLs for IL-1B, and three independent QTL for TNF-a. levels
(Table 1). Of the 17 loci, all but one were identified for cytokines
measured after PBMC stimulations, while one locus on chromo-
some 19 came from the whole-blood stimulation system
(Table 1). We identified cQTLs for both monocyte- and T cell-
derived cytokines upon bacterial and fungal stimulations,
whereas stimulation with purified TLR ligands only yielded
cQTLs for monocyte-derived cytokines (Figure S3B). The validity
of the 17 loci was further corroborated for the 12 cytokine-micro-
bial stimulations that were performed in the 200FG cohort. Of the
cQTLs, 9/12 (75%) were replicated (p < 0.05), and, in all cases,
the effects were in the same direction (Table S2). We could not
replicate five of the cQTLs, as these stimulus-cytokine measure-
ments were not tested in the 200FG cohort. No genome-wide
significant cQTLs were identified for the macrophage production
of cytokines, which agrees with the conclusion that the process
of in vitro differentiation erases many of the differences between
individuals. This conclusion has important consequences, as it
suggests that in-vitro-differentiated cell systems (such as mono-
cyte-derived macrophages or dendritic cells) may not be suit-
able for studying the genetics of cytokine responses.

Prioritizing cQTL-Affected Genes Indicates Those
Involved in Microbial Sensing and Processing Molecules
as Putative Causal Genes

We used three approaches to identify the causal genes at the 17
significant cQTL loci. First, we tested whether the cQTLs were
strongly correlated with other SNPs that alter the protein struc-
ture of any genes. Using the HaploReg SNP annotation tool
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Figure 4. Genome-wide Significant Cytokine QTLs and Their Shared Association
(A) A circular Manhattan plot showing the 17 independent genome-wide significant loci associated with different cytokine levels. The cytokine name, type of
stimuli, and the top SNP rs ID is given. Loci that affect fungal-induced cytokines are shown in pink; loci that affect bacterial-induced cytokines are in blue; loci that

affect TLR-ligand-induced cytokines are in green.

(B) The association results of all 17 genome-wide significant cQTLs with all the available cytokine measurements are shown. The color key indicates the range of
cQTL p values (shown as —logyo p value) from p < 0.01 to p < 5 x 10722, Red indicates the minor allele associated with higher levels of cytokines, while blue
indicates the minor allele associated with lower levels of cytokines. The x axis shows all 17 genome-wide significant loci, and the y axis shows the cytokine-stimuli

pairs. WB, whole blood.
See also Figure S3 and Tables S2 and S8.

(Ward and Kellis, 2012), we extracted all SNPs in linkage disequi-
librium (LD) (R2 > 0.8; using the CEU population as a reference)
with the cQTLs. We found two loci that were in strong LD
with missense variants (Table S3): SNPs rs28393318 and
rs6834581 on chromosome 4 were in strong LD (R? = 0.97,

D prime = 0.99) with a missense variant, rs4833095, on the
TLR1 gene. SNP rs7256586 on chromosome 19 was in strong
LD with a missense variant rs198977 (R = 0.82, D prime =
0.92) on the KLK2 gene. These observations suggest that
TLR1 and KLK2 could be causal genes at these cQTL loci. The
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Table 1. Genome-Wide Significant Cytokine QTL Loci

Cell

Locus SNPs Chromosome Base Pair  Stimulation Cytokine System Time  p Value® Causal Genes

1 rs891372 1 207414046 C. burnetii IL-6 PBMC 24hr 3.2 x10°° CD55°°and CR2>°

2 rs4496335 2 113844475 Cryptococcus TNF-o  PBMC 24hr 4.2 x107° IL1RN®

3 rs9941692 2 153183071 C. burnetii IL-6 PBMC 24hr 3.7 x 107'© FMNL2® and STAM2°

4 rs28393318 4 38784267  Poly(l:C) IL-1B PBMC 24hr 2.8 x10~"" TLR1°%9 TLR6™°, TLR10°°,

rs6834581 4 38788234  C. burnetii IL-1B PBMC 24hr 4.6 x 1013 and FAM114A7°
rs6834581 4 38788234  Poly(1:C) IL-6 PBMC 24hr 3.9 x 102

5 rs351250 5 141286682 C. burnetii IL-6 PBMC 24hr 3.3 x107® SLC25A2°, PCDH12°, and
KIAA0141°

6 rs543772713 7 6742260  C.albicans ~ TNF-o. PBMC 24hr 42 x 108 ZNF12°

7 rs10108108 8 5056750  C. albicans IL-22 Tcell 7days 1.5x10°® CSMD71°®

8 rs10959009 9 10278031  C. burnetii IL-6 PBMC 24hr 3.9 x10® PTPRD®

9 rs17615278 10 36600213  Borrelia IFN-y Tcell 7days 3.9 x10°® RP17-92J19.3° and RP11-
810B23.1°

10 rs2350821 10 86927851 LPS IL-1B PBMC 24hr 1.3 x10°® RP11-181F12.1°

11 rs10908219 11 69602333  Cryptococcus IFN-y Tcell 7days 1.0x 108 FGF19°, FGF4°, FGF3°, and
MIR3164°

12 rs11020229 11 93000542  S. aureus IL-22 Tcell 7days 2.4 x10°° SLC36A4"°

13 rs10790723 11 124961985 C. burnetii IL-1B PBMC 24hr 1.0 x107® SLC37A2°° and AP001007.1°

14 rs7310164 12 56185207  C. burnetii IL-6 PBMC 24hr 4.7 x107° [TGA7"°, CD63°, and MMP19°

15 rs11103976 12 86908614  Borrelia IFN-y Tcell 7days 9.2 x10°° MGAT4C®

16 rs4491463 15 36645770 E. coli TNF-o.  PBMC 24hr 1.2 x 107" RP11-47513.1° and
RP1147513.2°

17 rs7256586 19 51390809 C. albicans IL-6 Blood 48hr 85 x10° KLK2and KLK4°

aCytokine QTL p values are derived after correcting for age, gender, and cell-count levels.

PExpression QTL results in blood show a correlation between cytokine QTL SNP and the expression of that gene.
°The gene is differentially expressed in response to microbial stimulation in PBMCs.

d9Cytokine QTL SNP is in linkage disequilibrium with a missense variant within that gene.

®The closest gene to the cytokine QTL is shown.

other 15 cQTLs and their proxies are all located in non-coding re-
gions of the genome, suggesting a possible regulatory function
of cQTL loci.

As a second approach, we performed cis-eQTL mapping us-
ing RNA-sequencing (RNA-seq) data and genotype data from
629 healthy-donor blood samples (LifeLines-Deep cohort)
(Ricano-Ponce et al., 2016; Tigchelaar et al., 2015) as well as
eQTL results obtained from publicly available datasets provided
by HaploReg (Ward and Kellis, 2012).

As a third approach, we hypothesized that the genes that are
differentially regulated in response to different microbial stimuli
are the potential causal genes at our cQTL loci. To test this, we
extracted all the genes, including the non-coding genes, located
in a 500-kb cis-window of the 17 cQTLs and tested their expres-
sion in PBMCs stimulated with different microbial antigens (Fig-
ure S3C). By combining these three approaches, we identified 21
putative causal genes in 12 of the loci (Table 1). In the remaining
five loci, the gene nearest to the cQTL SNP is shown. Intriguingly,
the genes we identified by these three approaches were all
regulatory genes modulating cytokine production, rather than
eQTLs directly modulating the transcription of cytokine genes
and the production of cytokines themselves. The identified
genes were mainly involved in microbial sensing (TLR1, TLR6,
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TLR10, CSMD1, CD63, CR2, and CD55), processing molecules
(SLC36A4 and SLC37A2), endoplasmic reticulum organization,
and cytokine signaling (IL1F10, IL1RN, and STAM2).

TLR1-TLR6-TLR10 Locus Is Associated with Cytokine
Production Capacity for Diverse Stimulations

The strongest association among the 17 cQTL loci was at the
TLR1-TLR6-TLR10 locus (Figures 5A and 5B) on chromosome
4, influencing poly(l:C)-induced IL-6 (p = 3.93 x 1072°) and IL-
1B levels (p = 2.47 x 107" in PBMCs. This locus also showed
significant association with Coxiella burnetii-induced IL-1B
(p = 4.62 x 107" and TNF-a (p = 7.59 x 1078 levels, as well
as moderate association with 20 different cytokine levels
(false-discovery-rate [FDR]-corrected p < 0.05) in response to
multiple other microbial stimulations (Figure 4B). This locus
was also found to be under strong evolutionary selection (dis-
cussed later). Since we also had full transcriptomics data ob-
tained by RNA-seq on PBMCs from 70 healthy individuals in
the Lifelines-Deep cohort (Tigchelaar et al., 2015) stimulated
with Candida albicans, we were able to construct co-expression
networks for the various alleles of the TLR7-TLR6-TLR10 locus.
Our pathway analysis showed an interesting differential induc-
tion of genes that are important for cytokine regulation and
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Figure 5. Regional Association Plots and Boxplots for Cytokine QTLs

Genotype at rs4496335

(A-D) Regional association plots at (A) the TLR10-TLR1-TLR®6 locus associated with poly(l:C)-induced IL-6 levels and (C) the IL1F10-IL1RN locus associated with
Cryptococcus-induced TNF-a levels. The corresponding p values (as —log+o values) of all SNPs in the region were plotted against their chromosomal position.
Estimated recombination rates are shown in blue to reflect the local LD structure (based on the CEU population) around the associated top SNP and its correlated
proxies (with bright red indicating highly correlated and pale red indicating weakly correlated). Boxplots in (B) and (D) show the genotype-stratified cytokine levels

for the TLR and IL1RN loci, respectively.
See also Figures S4 and S5.

dependent on the cytokine-inducing allele (rs6834581*C) or the
alternative allele (rs6834581*T) (Figure S4). Many of these differ-
entially regulated genes have been shown to be important for
cytokine regulation; for example, TREML4 encodes for a protein
crucial for TLR7 signaling and antiviral defense (Ramirez-Ortiz
et al., 2015), and SCGB3A1 encodes for the cytokine-like secre-
toglobin family 3A member 1 (or HIN-1), which plays animportant
role in lung inflammation (Yamada et al., 2009).

IL1F10-IL1RN Locus Is a Shared QTL for Cryptococcus-
and Influenza-Induced Cytokines

We found a significant cQTL for TNF-a levels in response
to Cryptococcus (Figures 5C and 5D) on chromosome 2
(p = 4.22 x 107°). The same SNP (rs4496335) also has an effect
on the expression of genes in the IL-1F10-ILTRN locus that en-
codes the IL-1 receptor antagonist. This locus also showed
moderate association with IL-6 (3.38 x 107) and IL-1B levels
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(5.51 x 107%) in response to Cryptococcus. IL-1Ra is a known
natural antagonist of the IL-1 receptor pathway, but it was not
known whether this also influences Cryptococcus-induced cyto-
kine production. In order to validate this finding, we performed a
series of experiments in which we show that pre-incubation of
PBMCs with IL-1Ra significantly inhibits the induction of cyto-
kines by Cryptococcus (Figure S5A). This is the only locus
in our 17 cQTL loci that was also moderately associated with
influenza-induced TNF-a, IL-1B3, and IL-6 levels (Figure 4A).
Unsupervised clustering analysis of cytokines (Figure 2A)
showed much stronger similarities between influenza- and Cryp-
tococcus-induced responses than between Cryptococcus and
other fungi-induced responses, suggesting that these two path-
ogens activate similar inflammatory pathways. This association
warrants further study.

CSMD1 and SLC36A4 Loci Specifically Regulate T
Cell-Derived Cytokines

We quantified three T cell-derived cytokines (IL-22, IL-17, and
interferon [IFN]-y) after stimulating PBMCs for 7 days with
various stimuli. We found three genome-wide significant loci
for IFN-y and two for IL-22 levels (Table 1). The strongest
association in these five loci was at the SLC36A4 locus on chro-
mosome 11 (Figures S5B and S5C), with Staphylococcus
aureus-induced IL-22 levels (p = 2.42 x 107%). SLC36A4 en-
codes for an amino-acid transporter with a high affinity for
glutamine, tryptophan, and proline (Pillai and Meredith, 2011).
Amino-acid metabolism (especially tryptophan and glutamine)
has been reported to modulate cytokine production (Bosco
et al., 2000; Coéffier et al., 2001; Harden et al., 2015). We vali-
dated this pathway in our study by showing that blocking
glutaminolysis with BPTES (bis-2-(5-phenylacetamido-1,3,4-
thiadiazol-2-yl)ethyl sulfide) significantly inhibits S. aureus-
induced IL-22 production (Figure S5D). The other cQTL for
C. albicans-induced IL-22 levels was found on chromosome 8
(p = 2.42 x 107 on the CSMD1 gene. CSMD1 encodes a pro-
tein that functions as a complement inhibitor (Escudero-Esparza
et al., 2013), and recent studies have shown that IL-22 and the
complement pathway influence each other and synergize during
host defense against pathogens (Yamamoto and Kemper, 2014).
The importance of the complement pathway for modulating
cytokine production is underscored by the presence of CR2
and CD55 among the genes whose genetic variation regulates
cytokine production (Table 1).

Finally, we tested whether the five independent T cell cytokine
QTLs were also associated with other cytokines. Although they
were moderately associated with cytokines produced in
response to other types of stimuli (e.g., Mycobacterium tubercu-
losis, Cryptococcus; see Table 1), CSMD1 and SLC36A4 loci
were specifically associated with IL-22 and IFN-y production
capacity.

KLK2-KLK4 Locus Is Significantly Associated with IL-6
Levels in Whole-Blood Stimulation

We quantified IL-6, IL-1B, TNF-a, and IFN-y after stimulating
whole blood for 48 hr with various stimuli. We identified one locus
on chromosome 19 as significantly associated (p = 8.50 x 1079
with C. albicans-induced IL-6 levels. This locus encodes for kal-
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licrein-related peptidases 2 and 4 (KLK2 and KLK4); the latter
has been described as inducing IL-6 production through activa-
tion of protease-activated receptor 1 (PAR-1), a well-known
immune-activated receptor (Wang et al., 2010). This locus is
also moderately associated with both monocyte- and T cell-
derived cytokines in response to multiple microbial stimulations
(Figure 4A).

cQTLs Are Enriched for Regions under Positive
Selection and Monocyte-Specific Enhancers and Are
Associated with Complex Human Diseases

Some of the cQTL loci were common to several stimuli, but many
were stimulus specific (Figure 4B). This finding supports the
conclusion that the cytokine response is evolutionarily built
around the response to specific pathogens, a process most
likely shaped by the selective evolutionary processes exerted
by local infections in certain geographical locations. This is
also supported by our observation that the cQTL genes are un-
der strong selective pressure. We intersected our 17 cQTLs
with the regions in the human genome catalogued as “loci under
positive selection” in 230 ancient Eurasian genomes (Mathieson
et al.,, 2015). Our cQTLs were significantly enriched (Kolmo-
gorov-Smirnov test, p value < 0.01) for “genes under positive
selection” in the Eurasian genomes (Figure 6A), including the
well-known TLR71-TLR6-TLR10 and LCT loci.

The fact that the majority of the cQTL loci were in LD with SNPs
in non-coding regions means that they could have regulatory
functions. Therefore, we intersected these 17 top cQTLs and
their proxies (¥ < 0.8) with the ENCODE-defined cell-type-
specific enhancers. This showed a significant enrichment of
these cQTLs in monocyte-specific enhancers (Figure 6B), sug-
gesting that many of the cQTLs influence gene expression in
monocytes and, thereby, alter cytokine production. We also
tested whether the 17 cQTLs are associated with human dis-
eases. We intersected the cQTLs with GWAS SNPs known to
influence susceptibility to various immune-mediated diseases.
Interestingly, SNPs that affect monocyte-derived cytokines are
also enriched for SNPs associated with infectious diseases (Fig-
ure 6C). In contrast, cQTLs that affect T cell-derived cytokines
are enriched for SNPs associated with autoimmune diseases
(Figure 6D). In addition, we identified a trend for the association
of cQTLs with SNPs associated with other complex human phe-
notypes, such as blood-related traits and cancer (Figure 6E).
These results suggest that proinflammatory cytokines have an
important role as underlying mediators in many complex human
diseases.

DISCUSSION

In three complementary studies in this issue of Cell, we report on
the impact of genetic (the present study), environmental (ter
Horst et al., 2016), and microbiome (Schirmer et al., 2016) factors
on the cytokine production capacity in a large cohort of healthy
individuals of Western European background. The present study
is broad both at the genomic level (8 million SNPs) and at a func-
tional level: we assessed three types of cellular stimulation
models (whole blood, PBMCs, and monocyte-derived macro-
phages) challenged with a comprehensive panel of bacterial,
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fungal, viral, and non-microbial metabolic stimuli. The data pre-
sented here support the hypothesis that genetic variation is one
of the main factors influencing cytokine responses, with variation
of several cytokines, especially the IL-1B/IL-6 pathway, being
mainly regulated by genetic factors (Figures S6 and S7). In line
with this, we identify 17 new genome-wide significant loci that in-
fluence cytokine production, and we provide genetic and func-
tional validation for their biological importance.

The conclusion that there is a high genetic heritability of cyto-
kine production capacity in the context of microbial stimulation is
supported by a recent study showing a strong genetic compo-
nent in the regulation of multiple immune traits in twins (Roederer
etal., 2015). The genes we identify as cytokine regulators can be
grouped into two processes: (a) innate immune genes, such as
the pattern recognition receptors (e.g., the TLR1/6/10 cluster),
and complement modulators; and (b) genes important for anti-
gen processing in the endoplasmic reticulum. Among this last
groups of genes, one of them (SLC36A4) is also an amino acid
transporter, particularly for tryptophan, proline, and glutamine

% of disease SNPs with
cQTL effect (P < 10-4)

., 0.05

£ 0 | (Pillai and Meredith, 2011), and we have
5003 ‘ here validated the role of glutamine
£ W metabolism in the induction of IL-22
2002 | responses.
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for infectious and autoimmune diseases

in humans is of considerable interest.

Our results imply that monocyte-derived
cQTLs are associated to a susceptibility to infections, while
T cell-derived cQTLs overlap with loci associated to autoimmune
diseases. This result has important implications, as it provides a
model to gain insight into the mechanistic basis of disease asso-
ciations in a cell-type-specific manner. This important finding is
underpinned by another HFGP study by Aguirre-Gamboa et al.
(2016), which describes cell-count QTLs that influence lympho-
cyte numbers being associated with susceptibility to autoim-
mune diseases. We were also able to further dissect the impact
of the various cQTLs for different pathologies and have, for
example, gained important new insight into the preferential
impact of monocyte-derived cQTLs for blood-related (hemato-
logical) diseases, while these are seen to be less strongly
involved in autoimmune diseases or cancer.

We also extracted additional important biological properties
characterizing cytokine responses. First, we observed a surpris-
ingly small impact of cell numbers on cytokine production ca-
pacity, even in the case of whole-blood stimulation, with only a
few exceptions showing a moderate impact. This conclusion is
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supported by the results of a previous study published by our
group (Li et al., 2016) and demonstrates that the most important
impact on cytokine secretion is determined by the intrinsic
cellular characteristics. Second, we identified an important
pattern in the architecture of cytokine responses: the production
capacity of various monocyte-derived or lymphocyte-derived
cytokines correlated strongly when cells were stimulated with a
specific pathogen, whereas the correlation was poor when
comparing bacterial stimuli with fungal and viral stimuli. This
makes sense from an evolutionary point of view, as immune re-
sponses mainly need to have plasticity to respond to specific in-
fectious pressures in any given geographic area (Netea et al.,
2012). This conclusion is supported by the enrichment of cQTL
genes among the genes recently reported to be under selection
in Eurasian populations (Mathieson et al., 2015). Finally, nearly all
the cQTLs described here are trans-QTLs, and they were signif-
icantly enriched in monocyte-specific enhancers. This suggests
that many cQTLs influence the expression of target genes in
monocytes to alter cytokine production indirectly.

There are also a number of limitations to the present study. Itis
possible that we may have underestimated the heritability of
cytokine responses by performing a SNP-based analysis. To
address this aspect, it will be interesting in the future to assess
the heritability of cytokine responses using longitudinal data,
as this will allow us to take other factors (e.g., seasonal variation)
into account. Moreover, future twin-based studies could take
the stimulation aspect into account when performing the herita-
bility estimation of immune parameters. In addition, although
this is the most comprehensive study on cytokine production
in humans so far, the number of cytokines measured is still
relatively limited. We have chosen to study the most important
proinflammatory cytokines produced by monocytes, Th1 and
Th17 cells; however, future studies should also include other
classes of cytokines, such as anti-inflammatory cytokines,
IFNs, or chemokines.

In conclusion, we present a comprehensive analysis of how
genetic variation affects cytokine production capacity in hu-
mans. Our study should be considered in the broader framework
of the HFGP, in which environmental, non-genetic host factors
and the microbiome have also been shown to influence immune
responses (see the accompanying studies by ter Horst et al.,
2016, and Schirmer et al., 2016, in this issue). In a first study,
we show that age is an important factor, with a specific defect
of IFN-y and IL-22 production in the elderly (ter Horst et al.,
2016): future studies in a population of elderly individuals should
assess Whether the genetic factors identified here also play arole
in this process. Similarly, gender and seasonality also influence
immune responses. In addition, the accompanying study by
Schirmer et al. demonstrates the impact of microbiome vari-
ability on cytokine responses. Although it is important to note
that the microbiome has an important role, it does seem to
have a smaller impact on cytokine production than host genetic
factors: while we observe here a 25% to 75% genetic heritability
for most of the cytokines mentioned, the microbiome variation
explains up to 10% of the cytokine production capacity
(Schirmer et al., 2016).

However, the genomic variation may act either directly or indi-
rectly through impacting on other factors, e.g., the microbiome. In
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this respect, recent studies have reported host genetic factors
that influence the microbiome (Bonder et al., 2016; Davenport
et al., 2015; Goodrich et al., 2016; Knights et al., 2014): future
studies in the HFGP plan to integrate the complex patient-related
and omics databases into comprehensive models to explain
cytokine production and other complex immune traits. These
complementary studies will be important in understanding the in-
fluences on human cytokine responses and their variation and
can be used to pinpoint factors that can be modified and targeted
for the personalized treatment of immune-mediated diseases.
Finally, the HFGP in general, and these three studies reported
in this issue of Cell in particular, offer an important methodology
beyond the analyses of cytokine responses, because they pro-
vide a framework for future functional genomics studies looking
to assess immune and non-immune biological processes.

STARXMETHODS

Detailed methods are provided in the online version of this paper
and include the following:

o KEY RESOURCES TABLE
® CONTACT FOR REAGENT AND RESOURCE SHARING
o EXPERIMENTAL MODEL AND SUBJECT DETAILS

O Ethics statement

O Population cohorts

O Stimuli
e METHOD DETAILS
PBMC collection and stimulation experiments
Macrophage differentiation and stimulation
Whole-blood stimulation experiments
Cytokine measurements
Cytokine clustering and variance analysis
Genotyping, quality control and imputation
Cytokine QTL mapping
Cytokine heritability estimation
Expression QTL analysis to prioritize causal genes
Genotype-dependent gene expression analysis at
rs6834581
Intersection of ENCODE enhancers and regions under
positive selection

O Extraction of infectious disease associated SNPs

O GWAS SNP extraction and enrichment analysis

O Enrichment for positive selection
® QUANTIFICATION AND STATISTICAL ANALYSIS
o DATA AND SOFTWARE AVAILABILITY

O Online database

OO0OO0OO0OO0OO0OO0OO0O0O0

o

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures and three tables and can be
found with this article online at http://dx.doi.org/10.1016/j.cell.2016.10.017.

An audio PaperClip is available at http://dx.doi.org/10.1016/j.cell.2016.10.
017#mmc4.

AUTHOR CONTRIBUTIONS

M.G.N. and C.W. coordinated the recruitment of cohorts and data generation.
M.G.N,, V.K,, L.A.B.J., and C.W. conceived and directed the study, with input


http://dx.doi.org/10.1016/j.cell.2016.10.017
http://dx.doi.org/10.1016/j.cell.2016.10.017#mmc4
http://dx.doi.org/10.1016/j.cell.2016.10.017#mmc4

from all authors. Y.L. analyzed and interpreted the data. M.O., S.S., and M.J.
conducted the stimulation experiments and cytokine quantification. R.A.-G.,
K.T.T.L.,, P.D., LR.-P., and V.K. performed genotyping and imputation.
R.A.-G. performed the analysis of variance explained by genetics. T.S.,
AF.MJ., Ev.d.V, M.v.D, F.v.d.V., and J.W.M.v.d.M. assisted the lab exper-
iments. M.A.S., S.W., R.J.X,, A.Z, and L.F. provided the computational frame-
work for the study and critical inputs to the study design. M.G.N., V.K., C.W.,
Y.L, M.O., S.S., and M.J. wrote the manuscript with input from all authors.

ACKNOWLEDGMENTS

We thank all volunteers in the 500FG and 200FG cohorts of the Human Func-
tional Genomics Project (HFGP) for their participation. We thank Kate Mcintyre
and Jackie Senior for editing the text. The HFGP is supported by an ERC
Consolidator grant (3310372), an IN-CONTROL CVON grant (CVON2012-
03), and a Spinoza prize (NWO SPI94-212) to M.G.N.; an ERC advanced grant
(FP/2007-2013/ERC grant 2012-322698) and a Spinoza prize (NWO SPI 92-
266) to C.W.; a Dutch Digestive Diseases Foundation grant (MLDS WO11-
30) to C.W. and V.K.; a European Union Seventh Framework Programme grant
(EU FP7) TANDEM project (HEALTH-F3-2012-305279) to C.W. and V.K;
and a Netherlands Organization for Scientific Research (NWO) VENI grant
(863.13.011) to Y.L. The creation and hosting of the online database has
been supported by BBMRI-NL, a research infrastructure financed by the
Netherlands Organization for Scientific Research (NWO), grant number
184.021.007. We thank Edith Adriaanse, Marije van der Geest, and Marieke
Bijlsma for structuring the data into the online database and the MOLGENIS
open source team (Dennis Hendriksen, Erwin Winder, Bart Charbon, Fleur Kel-
pin, Jonathan Jetten, Mark de Haan, Tommy de Boer, David van Enckevort,
Chao Pang, and Joeri van der Velde) for designing and implementing the data-
base software.

Received: May 13, 2016
Revised: August 4, 2016
Accepted: October 11, 2016
Published: November 3, 2016

REFERENCES

Aguirre-Gamboa, R., Joosten, |., P.C.M., U., van der Molen, R.G., van Rijssen,
E., van Cranenbroek, B., Oosting, M., Smeekens, S.P., Jaeger, M., Zorro, M.,
et al. (2016). Differential effects of environmental and genetic factors on T and
B cell immune traits. Cell Rep. Published online November 3, 2016. http://dx.
doi.org/10.1016/j.celrep.2016.10.053.

Anders, S., Pyl, P.T., and Huber, W. (2015). HTSeg-a Python framework to
work with high-throughput sequencing data. Bioinformatics 37, 166-169.
Bonder, M.J., Kurilshikov, A., Tigchelaar, E.F., Mujagic, Z., Imhann, F., Vila,
A.V., Deelen, P., Vatanen, T., Schirmer, M., Smeekens, S.P., et al. (2016).
The effect of host genetics on the gut microbiome. Nat. Genet. Published
October 3, 2016. http://dx.doi.org/10.1038/ng.3663.

Bosco, M.C., Rapisarda, A., Massazza, S., Melillo, G., Young, H., and Varesio,
L. (2000). The tryptophan catabolite picolinic acid selectively induces the che-
mokines macrophage inflammatory protein-1 alpha and -1 beta in macro-
phages. J. Immunol. 164, 3283-3291.

Brodin, P., Jojic, V., Gao, T., Bhattacharya, S., Angel, C.J.L., Furman, D.,
Shen-Orr, S., Dekker, C.L., Swan, G.E., Butte, A.J., et al. (2015). Variation in
the human immune system is largely driven by non-heritable influences. Cell
160, 37-47.

Coéffier, M., Miralles-Barrachina, O., Le Pessot, F., Lalaude, O., Daveau, M.,
Lavoinne, A., Lerebours, E., and Déchelotte, P. (2001). Influence of glutamine
on cytokine production by human gut in vitro. Cytokine 13, 148-154.
Davenport, E.R., Cusanovich, D.A., Michelini, K., Barreiro, L.B., Ober, C., and
Gilad, Y. (2015). Genome-Wide Association Studies of the Human Gut Micro-
biota. PLoS ONE 70, e0140301.

Deelen, P., Bonder, M.J., van der Velde, K.J., Westra, H.-J., Winder, E., Hen-
driksen, D., Franke, L., and Swertz, M.A. (2014a). Genotype harmonizer: auto-

matic strand alignment and format conversion for genotype data integration.
BMC Res. Notes 7, 901.

Deelen, P., Menelaou, A., van Leeuwen, E.M., Kanterakis, A., van Dijk, F.,
Medina-Gomez, C., Francioli, L.C., Hottenga, J.J., Karssen, L.C., Estrada,
K., et al.; Genome of Netherlands Consortium (2014b). Improved imputation
quality of low-frequency and rare variants in European samples using the
‘Genome of The Netherlands’. Eur. J. Hum. Genet. 22, 1321-1326.

Delaneau, O., Zagury, J.-F., and Marchini, J. (2013). Improved whole-chro-
mosome phasing for disease and population genetic studies. Nat. Methods
10, 5-6.

Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut,
P., Chaisson, M., and Gingeras, T.R. (2013). STAR: ultrafast universal RNA-seq
aligner. Bioinformatics 29, 15-21.

Escudero-Esparza, A., Kalchishkova, N., Kurbasic, E., Jiang, W.G., and Blom,
A.M. (2013). The novel complement inhibitor human CUB and Sushi multiple
domains 1 (CSMD1) protein promotes factor I-mediated degradation of C4b
and C3b and inhibits the membrane attack complex assembly. FASEB J. 27,
5083-5093.

Fairfax, B.P., Humburg, P., Makino, S., Naranbhai, V., Wong, D., Lau, E., Jos-
tins, L., Plant, K., Andrews, R., McGee, C., and Knight, J.C. (2014). Innate im-
mune activity conditions the effect of regulatory variants upon monocyte gene
expression. Science 343, 1246949.

Genome of the Netherlands Consortium (2014). Whole-genome sequence
variation, population structure and demographic history of the Dutch popula-
tion. Nat. Genet. 46, 818-825.

Goodrich, J.K., Davenport, E.R., Beaumont, M., Jackson, M.A., Knight, R.,
Ober, C., Spector, T.D., Bell, J.T., Clark, A.G., and Ley, R.E. (2016). Genetic
determinants of the gut microbiome in UK twins. Cell Host Microbe 79,
731-743.

Harden, J.L., Lewis, S.M., Lish, S.R., Suarez-Farifas, M., Gareau, D., Lentini,
T., Johnson-Huang, L.M., Krueger, J.G., and Lowes, M.A. (2015). The trypto-
phan metabolism enzyme L-kynureninase is a novel inflammatory factor in
psoriasis and other inflammatory diseases. J. Allergy Clin. Immunol. 737,
1830-1840.

Hirschfeld, M., Ma, Y., Weis, J.H., Vogel, S.N., and Weis, J.J. (2000). Cutting
edge: repurification of lipopolysaccharide eliminates signaling through both
human and murine toll-like receptor 2. J. Immunol. 165, 618-622.

Hitchcock, P.J., and Brown, T.M. (1983). Morphological heterogeneity among
Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide
gels. J. Bacteriol. 154, 269-277.

Howie, B., Marchini, J., and Stephens, M. (2011). Genotype imputation with
thousands of genomes. G3 (Bethesda) 7, 457-470.

Knights, D., Silverberg, M.S., Weersma, R.K., Gevers, D., Dijkstra, G., Huang,
H., Tyler, A.D., van Sommeren, S., Imhann, F., Stempak, J.M., et al. (2014).
Complex host genetics influence the microbiome in inflammatory bowel dis-
ease. Genome Med. 6, 107.

Kumar, V., Wijmenga, C., and Xavier, R.J. (2014a). Genetics of immune-medi-
ated disorders: from genome-wide association to molecular mechanism. Curr.
Opin. Immunol. 37, 51-57.

Kumar, V., Cheng, S.-C., Johnson, M.D., Smeekens, S.P., Wojtowicz, A., Gia-
marellos-Bourboulis, E., Karjalainen, J., Franke, L., Withoff, S., Plantinga, T.S.,
et al. (2014b). Immunochip SNP array identifies novel genetic variants confer-
ring susceptibility to candidaemia. Nat. Commun. 5, 4675.

Lee, M.N,, Ye, C., Villani, A.-C., Raj, T., Li, W., Eisenhaure, T.M., Imboywa,
S.H., Chipendo, P.I., Ran, F.A., Slowikowski, K., et al. (2014). Common genetic
variants modulate pathogen-sensing responses in human dendritic cells. Sci-
ence 343, 1246980.

Li, Y., Oosting, M., Deelen, P., Ricafio-Ponce, |., Smeekens, S., Jaeger, M.,
Matzaraki, V., Swertz, M.A., Xavier, R.J., Franke, L., et al. (2016). Inter-individ-
ual variability and genetic influences on cytokine responses to bacteria and
fungi. Nat. Med. 22, 952-960.

Mathieson, I., Lazaridis, I., Rohland, N., Mallick, S., Patterson, N., Rooden-
berg, S.A., Harney, E., Stewardson, K., Fernandes, D., Novak, M., et al.

Cell 167, 1099-1110, November 3, 2016 1109


http://dx.doi.org/10.1016/j.celrep.2016.10.053
http://dx.doi.org/10.1016/j.celrep.2016.10.053
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref1
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref1
http://dx.doi.org/10.1038/ng.3663
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref3
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref3
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref3
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref3
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref4
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref4
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref4
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref4
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref5
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref5
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref5
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref6
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref6
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref6
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref7
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref7
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref7
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref7
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref8
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref8
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref8
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref8
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref8
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref9
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref9
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref9
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref10
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref10
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref10
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref11
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref11
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref11
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref11
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref11
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref12
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref12
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref12
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref12
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref13
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref13
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref13
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref14
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref14
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref14
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref14
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref15
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref15
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref15
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref15
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref15
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref16
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref16
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref16
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref17
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref17
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref17
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref18
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref18
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref19
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref19
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref19
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref19
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref20
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref20
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref20
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref21
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref21
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref21
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref21
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref22
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref22
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref22
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref22
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref23
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref23
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref23
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref23
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref24
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref24

(2015). Genome-wide patterns of selection in 230 ancient Eurasians. Nature
528, 499-503.

Netea, M.G., Wijmenga, C., and O’Neill, L.A.J. (2012). Genetic variation in Toll-
like receptors and disease susceptibility. Nat. Immunol. 73, 535-542.

Pillai, S.M., and Meredith, D. (2011). SLC36A4 (hPAT4) is a high affinity amino
acid transporter when expressed in Xenopus laevis oocytes. J. Biol. Chem.
286, 2455-2460.

R Development Core Team (2015). R: A language and environment for statis-
tical computing (R Foundation for Statistical Computing).

Ramirez-Ortiz, Z.G., Prasad, A., Griffith, J.W., Pendergraft, W.F., 3rd, Cowley,
G.S., Root, D.E., Tai, M., Luster, A.D., El Khoury, J., Hacohen, N., and Means,
T.K. (2015). The receptor TREML4 amplifies TLR7-mediated signaling during
antiviral responses and autoimmunity. Nat. Immunol. 716, 495-504.

Ricafio-Ponce, I., Zhernakova, D.V., Deelen, P., Luo, O., Li, X., Isaacs, A., Kar-
jalainen, J., Di Tommaso, J., Borek, Z.A., Zorro, M.M., et al.; BIOS Consortium;
Lifelines Cohort Study (2016). Refined mapping of autoimmune disease asso-
ciated genetic variants with gene expression suggests an important role for
non-coding RNAs. J. Autoimmun. 68, 62-74.

Roederer, M., Quaye, L., Mangino, M., Beddall, M.H., Mahnke, Y., Chattopad-
hyay, P., Tosi, |., Napolitano, L., Terranova Barberio, M., Menni, C., et al.
(2015). The genetic architecture of the human immune system: a bioresource
for autoimmunity and disease pathogenesis. Cell 167, 387-403.

Roest, H.-J., van Gelderen, B., Dinkla, A., Frangoulidis, D., van Zijderveld, F.,
Rebel, J., and van Keulen, L. (2012). Q fever in pregnant goats: pathogenesis
and excretion of Coxiella burnetii. PLoS ONE 7, e48949.

Schirmer, M., Smeekens, S.P., Vlamakis, H., Jaeger, M., Oosting, M., Fran-
zosa, E.A., Jansen, T., Jacobs, L., Bonder, M.J., Kurilshikov, A, et al. (2016).
Linking the human gut microbiome to inflammatory cytokine production
capacity. Cell 167, this issue, 1125-1136.

Schramek, S., and Galanos, C. (1981). Lipid A component of lipopolysaccha-
rides from Coxiella burnetii. Acta Virol. 25, 230-234.

Shah, T.S., Liu, J.Z., Floyd, J.A., Morris, J.A., Wirth, N., Barrett, J.C., and
Anderson, C.A. (2012). optiCall: a robust genotype-calling algorithm for rare,
low-frequency and common variants. Bioinformatics 28, 1598-1603.

Smeekens, S.P., Ng, A., Kumar, V., Johnson, M.D., Plantinga, T.S., van Die-
men, C., Arts, P., Verwiel, E.T.P., Gresnigt, M.S., Fransen, K., et al. (2013).
Functional genomics identifies type | interferon pathway as central for host de-
fense against Candida albicans. Nat. Commun. 4, 1342.

1110 Cell 767, 1099-1110, November 3, 2016

Swertz, M.A., Dijkstra, M., Adamusiak, T., van der Velde, J.K., Kanterakis, A.,
Roos, E.T., Lops, J., Thorisson, G.A., Arends, D., Byelas, G., et al. (2010). The
MOLGENIS toolkit: rapid prototyping of biosoftware at the push of a button.
BMC Bioinformatics 17 (Supp/ 12), S12.

ter Horst, R., Jaeger, M., Smeekens, S.P., Oosting, M., Swertz, M.A.,, Li, Y., Ku-
mar, V., Diavatopoulos, D.A., Jansen, A.F.M., Lemmers, H., et al. (2016). Host
and Environmental Factors Influencing Individual Human Cytokine Responses.
Cell 167, this issue, 1111-1124.

Tigchelaar, E.F., Zhernakova, A., Dekens, J.A.M., Hermes, G., Baranska, A.,
Muijagic, Z., Swertz, M.A., Mufioz, A.M., Deelen, P., Cénit, M.C., et al.
(2015). Cohort profile: LifeLines DEEP, a prospective, general population
cohort study in the northern Netherlands: study design and baseline character-
istics. BMJ Open 5, e006772.

Wang, W., Mize, G.J., Zhang, X., and Takayama, T.K. (2010). Kallikrein-related
peptidase-4 initiates tumor-stroma interactions in prostate cancer through
protease-activated receptor-1. Int. J. Cancer 126, 599-610.

Ward, L.D., and Kellis, M. (2012). HaploReg: a resource for exploring chro-
matin states, conservation, and regulatory motif alterations within sets of
genetically linked variants. Nucleic Acids Res. 40, D930-D934.

Welter, D., MacArthur, J., Morales, J., Burdett, T., Hall, P., Junkins, H., Klemm,
A., Flicek, P., Manolio, T., Hindorff, L., and Parkinson, H. (2014). The NHGRI
GWAS Catalog, a curated resource of SNP-trait associations. Nucleic Acids
Res. 42, D1001-D1006.

Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.W., da Silva Santos, L.B., Bourne, P.E.,
et al. (2016). The FAIR Guiding Principles for scientific data management
and stewardship. Sci. Data 3, 160018.

Yamada, A., Suzuki, D., Miyazono, A., Oshima, K., Kamiya, A., Zhao, B., Ta-
kami, M., Donnelly, R.P., Itabe, H., Yamamoto, M., et al. (2009). IFN-gamma
down-regulates Secretoglobin 3A1 gene expression. Biochem. Biophys.
Res. Commun. 379, 964-968.

Yamamoto, H., and Kemper, C. (2014). Complement and IL-22: partnering up
for border patrol. Immunity 47, 511-513.

Yang, J., Benyamin, B., McEvoy, B.P., Gordon, S., Henders, A.K., Nyholt, D.R.,
Madden, P.A., Heath, A.C., Martin, N.G., Montgomery, G.W., et al. (2010).
Common SNPs explain a large proportion of the heritability for human height.
Nat. Genet. 42, 565-569.

Zaitlen, N., and Kraft, P. (2012). Heritability in the genome-wide association
era. Hum. Genet. 137, 1655-1664.


http://refhub.elsevier.com/S0092-8674(16)31400-3/sref24
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref24
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref25
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref25
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref26
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref26
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref26
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref27
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref27
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref28
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref28
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref28
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref28
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref29
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref29
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref29
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref29
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref29
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref30
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref30
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref30
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref30
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref31
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref31
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref31
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref32
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref32
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref32
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref32
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref33
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref33
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref34
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref34
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref34
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref35
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref35
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref35
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref35
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref36
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref36
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref36
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref36
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref36
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref37
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref37
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref37
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref37
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref38
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref38
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref38
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref38
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref38
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref39
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref39
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref39
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref40
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref40
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref40
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref41
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref41
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref41
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref41
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref42
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref42
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref42
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref42
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref43
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref43
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref43
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref43
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref44
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref44
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref45
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref45
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref45
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref45
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref46
http://refhub.elsevier.com/S0092-8674(16)31400-3/sref46

STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Chemicals, Peptides, and Recombinant Proteins

ProlastinC (AAT) Grifols N/A
BSA SIGMA A7030
Critical Commercial Assays

Human IL-1beta ELISA Kit RD Systems DY201
Human IL-6 ELISA Kit PeliKine Compact M9316
Human TNF-a ELISA Kit RD Systems DY210
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Human IL-1Ra ELISA Kit RD Systems DRAQOB
Human IL-18Bp ELISA Kit RD Systems DY119
IgM,1gG,IgA Beckman Coulter In house
IgG subclasses Binding Site BN Il Combi Kit
25-hydroxy vitamin D3 measurement LCMSMS In house
Testosterone measurement LCMSMS In house
Progesterone measurement LCMSMS In house

Plasma IL-1beta
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Plasma IL-18
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Mouse IL-1beta

TruSeq RNA sample preparation kit v2
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RD Systems
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Deposited Data
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Koninklijk Nederlands Meteorologisch
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Ensembl
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https://hfgp.bbmri.nl/
http://projects.knmi.nl/klimatologie/
daggegevens/selectie.cgi

http://ftp.ensembl.org/pub/release-75/
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Experimental Models: Organisms/Strains

Human PBMCs and Human Monocytes
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Staphylococcus aureus

LPS
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C. burnetii
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Primary/Healthy volunteers
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N/A
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H37Rv

Nine Mile RSA493

ATCC strain 35210
(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

C. albicans blastoconidia N/A strain ATCC MYA-3573, UC 820
Aspergillus fumigatus N/A V05-27

Cryptococcus gattii N/A A1M-R265, AFLP type 6
Influenza virus N/A pH1N1 A/Netherlands/602/09
Pam3Cys EMC microcollections (L-2000) N/A

Polyl:C InvivoGen N/A

PHA Sigma N/A

Sequence-Based Reagents

Life Technologies Globin Clear kit lllumina www.illumina.com

Paired End cluster kit llumina www.illumina.com
HiSeq2500 SBS Sequencing reagents llumina www.illumina.com

Infinium CoreExome-24 v1.1 kit lllumina www.illumina.com

Software and Algorithms

R programming language R Development Core Team, 2015.
R: A language and environment for
statistical computing. R Foundation for

Statistical Computing, Vienna, Austria.

https://www.R-project.org/

Custom scripts in the r programming
language based on function like: Im {stats},
cor {stats}, cor.test {stats}

R Development Core Team, 2015.

R: A language and environment for
statistical computing. R Foundation for
Statistical Computing, Vienna, Austria.

Dobin et al., 2013

https://www.R-project.org/

RNA sequencing mapping: STAR https://github.com/alexdobin/STAR

(version 2.3.0)
RNA read counting: HTSeq Anders et al., 2015 http://www-huber.embl.de/users/anders/
(version 0.5.4p3) HTSeqg/doc/overview.html

CONTACT FOR REAGENT AND RESOURCE SHARING
Request should be directed and will be fulfilled by lead author Y.L. (y.li01@umcg.nl).
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement

The HFGP study was approved by the Ethical Committee of Radboud University Nijmegen, the Netherlands (no. 42561.091.12). Ex-
periments were conducted according to the principles expressed in the Declaration of Helsinki. Samples of venous blood were drawn
after informed consent was obtained.

Population cohorts

The study was performed in two independent cohorts of ~500 and ~200 healthy individuals of Western European ancestry from the
Human Functional Genomics Project (500FG and 200FG cohorts, see www.humanfunctionalgenomics.org). The 500FG cohort com-
prises 534 adults from Nijmegen, the Netherlands (237 males and 296 females, age range 18-75 years). The 200FG cohort comprises
Individuals from the ‘Geldersch Landschap’, ‘Hoge Veluwe’, ‘Twickel’, and ‘Kroondomein het Loo’ in the Netherlands (77% males
and 23% females, age range 23-73 years old).

Stimuli

Bacteria

Bacteroides fragilis (NCTC 10584) grown anaerobically overnight at 37°C on blood agar plates (BD Biosciences, Franklin Lakes) was
inoculated in 20 mL pre-warmed and pre-reduced Brain Heart Infusion broth (BD Diagnostics, Basel) and again grown anaerobically
overnight at 37°C until reaching a stationary growth phase mimicking growth conditions in abscesses. Bacterial suspensions were
washed three times in phosphate-buffered saline (PBS; B. Braun Medical B.V., Melsungen) and heat-killed at 95°C for 30 min. Before
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heat-killing, aliquots of bacterial suspensions were taken to determine colony-forming unit (CFU) counts. Heat-killed bacteria were
washed again and after adjusting the concentration in PBS to 1 x 108 CFU/mL, stored at—80°C. B. fragilis was used in the stimulation
experiments as 1 x 10%/mL.

E. coli ATCC 25922 was grown overnight in culture medium, washed three times with PBS, and heat-killed for 60 min at 80°C.
Staphylococcus aureus strain ATCC 29213 was grown overnight in culture medium, washed twice with cold PBS, and heat-killed
for 30 min at 100°C; both E. coli and S. aureus were used in a final concentration of 1 x 10%/mL. Success of heat-inactivation
was confirmed by cultures.

LPS (E. coli serotype 055:B5), a TLR4 ligand, was purchased from Sigma-Aldrich (St. Louis) and an extra purification step was per-
formed as described previously (Hirschfeld et al., 2000). Purified LPS was tested in TLR4™~ mice for the presence of contaminants
and did not show any TLR4-independent activity. CpG (ODN M362) was purchased from InvivoGen (San Diego) and used at a final
concentration of 10 pg/mL.

Cultures of H37Rv Mycobacterium tuberculosis (MTB) were grown to mid-log phase in Middlebrook 7H9 liquid medium (Difco,
Becton Dickinson, East-Rutherford) supplemented with oleic acid/albumin/dextrose/catalase (OADC) (BBL, Becton Dickinson),
washed three times in sterile saline solution, heat-killed and then disrupted using a bead beater, after which the concentration
was measured using a bicinchoninic acid (BCA) assay (Pierce, Thermo Scientific, Rockuville).

C. burnetii Nine Mile RSA493 (NM) phase | (a gift from the Bundeswehr Institute for Microbiology, Munich, Germany) was cultured
on buffalo green monkey cells, and the numbers of Coxiella DNA copies were determined using TagMan real-time polymerase chain
reaction as described (Roest et al., 2012). Lipopolysaccharide (LPS) phase determination was performed by sodium dodecyl sulfate
polyacrylamide gel electrophoresis and silver staining, using purified phase | (RSA493) and phase Il (RSA439) C. burnetii NM LPS
(kindly provided by R. Toman) as controls (Hitchcock and Brown, 1983; Schramek and Galanos, 1981). C. burnetii was inactivated
by heating for 30 min at 99°C.

B. burgdorferi, ATCC strain 35210, was cultured at 33°C in Barbour-Stoenner-Kelley (BSK)-H medium (Sigma-Aldrich) supple-
mented with 6% rabbit serum. Spirochetes were grown to late-logarithmic phase and examined for motility by dark-field microscopy.
Organisms were counted using a Petroff-Hauser counting chamber. Bacteria were harvested by centrifugation of the culture at
3000 g for 30 min, washed twice with sterile PBS (pH 7.4), and diluted in the specified medium to the required concentrations of
1 x 108 spirochetes per mL. The serum-resistant Salmonella typhimurium strain (phage type 510) was grown at 37°C for 12 hr in
nutrient broth (BHI Oxoid, Nepean). Bacteria were collected and centrifuged and then washed three times in PBS. Aliquots were
stored at —20°C throughout the study.

Fungi

Heat-killed C. albicans blastoconidia (strain ATCC MYA-3573, UC 820) in a concentration of 10° CFU/mL were used throughout
this study. A clinical isolate of Aspergillus fumigatus V05-27 was used for stimulations. Isolates were grown on YAG agar plates
for 3 days at 37°C. Fungal spores in the presence of sterile 0.1% Tween 20 in PBS were harvested by gentle shaking, washed
twice with PBS, filtered through a 40-mm pore size cell strainer (Falcon, Vienna) to separate conidia from contaminating
mycelium. They were then counted by a hemacytometer, suspended at a concentration of 108 spores/mL and heat-killed. A final
concentration of 1 x 107/mL was used in the experiments. A clinical isolate of Cryptococcus gattii (AIM-R265, AFLP type 6)
was freshly grown on Sabouraud dextrose agar plates. Afterward a suspension in PBS was heat-killed at 56°C for 24 hr and
then quantified at a wavelength of 530 nm on a spectrophotometer. Killing efficiency as well as bacterial and fungal contami-
nation was checked using Sabouraud dextrose and blood agar plates, respectively. Aliquots were stored at —20°C throughout
the study.

Influenza virus culture and inactivation. Influenza virus strain pH1N1 A/Netherlands/602/09 (kindly provided by Prof. Ron Fouchier,
Erasmus MC, Rotterdam) was grown in the allantoic fluid of embryonated chicken eggs. Viral titers were determined by three inde-
pendent plaque assays performed on Madin-Darby canine kidney (MDCK) cells. To inactivate the pH1N1 strain, B-propiolactone
(BPL) (Acros Organics, Morris Plans) in citrate buffer (125 mM sodium citrate, 150 mM sodium chloride [pH 8.2]) was added to
the pH1N1 virus to a final concentration of 0.1% and incubated for 24 hr at 4°C under continuous slow shaking. Inactivated virus
was subsequently snap-frozen and stored at -80°C. Virus inactivation was confirmed by three passages in MDCKs where no virus
could be detected by plaque assay following the third passage.

TLR ligands and non-microbial stimuli
Pam3Cys, a TLR1/2 ligand, was purchased at EMC microcollections (L-2000) and used in a final concentration of 10 pg/mL.

Polyl:C, a TLR3 ligand, was purchased from InvivoGen and used at a final concentration of 100 ng/mL. PHA was purchased from
Sigma and used at a final concentration of 10 pg/mL. Palmitic acid was purchased from Sigma-Aldrich. Human albumin (Albuman)
was purchased from Sanquin (Amsterdam). Stock palmitic acid was dissolved in 100% ethanol. Palmitic acid (C16.0) and human
albumin were conjugated by warming to 37°C in a water bath before adding together in a 1:5 ratio. The mixture was sonicated for
20-25 min and kept at 37°C until use. The vehicle control for 50 pM C16.0 consisted of 0.025% albumin and 0.025% ethanol.
MSU crystals were formed by dissolving 1.0 g of uric acid and 0.48 g sodium hydroxide in 400 mL of sterile water. The pH was
adjusted to 7.2 and the solution was sterilized by heating it for 6 hr at 120°C. No LPS contamination was detected by Limulus amoe-
bocyte lysate assay.
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METHOD DETAILS

PBMC collection and stimulation experiments
After obtaining informed consent, venous blood was drawn from the cubital vein of volunteers into 10 mL EDTA Monoject tubes
(Medtronic, Dublin). The PBMC fraction was obtained by density centrifugation of EDTA blood diluted 1:1 in pyrogen-free saline
over Ficoll-Pague (Pharmacia Biotech, Uppsala). Cells were washed twice in saline and suspended in medium (RPMI 1640) supple-
mented with gentamicin (10 mg/mL), L-glutamine (10 mM) and pyruvate (10 mM). Addition of antibiotics such as gentamycin is a stan-
dard method used to avoid contamination of cultures, and it does not influence the ability to induce cytokine production by PBMCs or
macrophages (data not shown). The cells were counted in a Coulter counter (Beckman Coulter, Pasadena) and the number was
adjusted to 5 x 108 cells/mL. A total of 5 x 10% PBMCs in a total volume of 200 pL per well were incubated at 37°C in round-bottom
96-well plates with the different stimuli, as indicated above. After 24 h (for early cytokines IL-18, TNF-a, IL-6, IL-8, and IL-10), or
7 days of incubation (for IFN-y and IL-17), supernatants were collected and stored at —20°C until assayed. The stimulation periods
were chosen based on extensive studies that showed that 24 hr stimulation was best suited for assessing monocyte-derived cyto-
kines. When cells were cultured for 7 days, this was done in the presence of 10% human pooled serum.

For validation experiments, PBMCs were incubated with recombinant IL-1Ra (R&D Systems, Minneapolis) 10 pg/ml, 30 min before
stimulation with C. neoformans. The cytokine production capacity in the absence or presence of IL-1Ra was measured in the super-
natants as described above.

Macrophage differentiation and stimulation

We cultured > 5 x 10° monocytes in flat-bottom plates with 10% human serum at 37°C and 5%CO, for 6 days. After differentiation,
the medium was removed and the differentiated macrophages were stimulated for 24 hr. Supernatants were collected and stored
in —20°C until used for ELISA.

Whole-blood stimulation experiments
100 plL of heparin blood was added to a 48-well plate and then stimulated with 400 pL stimulus (final volume 500 pl) for 48 hr at 37°C
and 5%CO0O,. Supernatants were collected and stored in —20°C until used for ELISA.

Cytokine measurements

Concentrations of human IL-18, IL-6, IL-10, TNF-«, IL-17, or IFN-y were determined using specific commercial ELISA kits (PeliKine
Compact, Amsterdam, or R&D Systems), in accordance with the manufacturer’s instructions. Detection limits were 31 pg/mL (IL-6
(macrophages), 39 pg/mL (IL-18 and IFNy), 156 pg/mL (IL-6 (whole blood), IL-22) or 78 pg/mL (TNF-a and IL-17).

Cytokine clustering and variance analysis

Raw cytokine levels were first log-transformed, and cytokine measurements showing little/no variation across individuals were
filtered out for the follow-up analysis. We excluded 17 stimulation-cytokine measurements that did not pass our quality control. Un-
supervised hierarchical clustering was performed using Spearman’s correlation as the measure of similarity. We used Levene’s test
to check the equality of variance of cytokine levels before and after stimulation.

Genotyping, quality control and imputation

DNA samples of 500 individuals were genotyped using the commercially available SNP chip, lllumina HumanOmniExpressExome-8
v1.0. The genotype calling was performed using Opticall 0.7.0 (Shah et al., 2012) using default settings. Samples with a call
rate < 0.99 were excluded from the dataset, as were variants with a Hardy-Weinburg equilibrium (HWE) < 0.0001, call
rate < 0.99 and minor allele frequency (MAF) < 0.001. We identified 17 ethnic outliers by merging multi-dimensional scaling plots
of samples with 1000 Genomes data and these were excluded from further analysis (Figure S7). This resulted in a dataset of 483 sam-
ples containing genotype information on 518,980 variants for further imputation. The strands and variant-identifiers were aligned to
the reference Genome of the Netherlands (GoNL, Genome of the Netherlands Consortium, 2014) dataset using Genotype Harmonizer
(Deelen et al., 2014a). The data were phased using SHAPEIT2 v2 (Delaneau et al., 2013) using GoNL as a reference panel. Finally,
these data were imputed using IMPUTE2 (Howie et al., 2011) with GoNL as the reference panel (Deelen et al., 2014b). We selected
SNPs that showed an INFO score > 0.8 upon imputation for further cytokine QTL mapping.

Cytokine QTL mapping

Both genotype and cytokine data could be generated for a total of 442 individuals. We obtained cell count data measured by FACS for
total ymphocytes, T cells, B cells, monocytes and NK-cells from 487 individuals from the 500FG cohort. In total, there were 409 sam-
ples with genotype, cytokine, and cell-count data. We excluded 17 samples due to genetic differences. We coded gender information
either 0 for females or 1 for males. The actual age, gender, and cell-count information were included as covariables in the linear model
to correct the cytokine distributions for QTL mapping. Raw cytokine levels were first log-transformed then mapped to genotype data
using a linear regression model with age and gender as covariates. Since the stimulation-cytokine combinations cannot be regarded
as completely independent (we observed strong correlations in the cytokine clustering analysis we performed), the total number of
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independent tests among all phenotypes will be much less than the number of phenotypes measured, and therefore correcting for the
number of SNPs tested for each trait should be sufficient. We considered a p value of <5 x 1078 to be the threshold for significant
cytokine QTLs.

Cytokine heritability estimation

Using the GCTA tool (Yang et al., 2010), we fitted a linear mixed model to each of the 112 cytokine phenotypes and used restricted
maximum likelihood to estimate the variance explained by the approximately 8 million SNPs. Following our method for cQTL map-
ping, we also included age, gender, and cell counts as covariates for estimating the proportions of phenotypic variance explained by
the SNPs. It should be noted that the 95% confidence intervals for the heritability estimate are wide due to the sample size (N < 1000)
in this study (Zaitlen and Kraft, 2012).

Expression QTL analysis to prioritize causal genes

RNA sequencing of 629 peripheral blood samples from the LifeLines-Deep cohort (Tigchelaar et al., 2015) were investigated to map
cis-eQTLs. The eQTL mapping strategy and data have been described in detail (Ricano-Ponce et al., 2016). Briefly, cis-eQTL analysis
was performed on transcript-SNP combinations for which the distance from the center of the transcript to the genomic location of the
SNP was < 500 kb. Associations were tested by non-parametric Spearman’s rank correlation test and a p value < 0.05 was consid-
ered significant. We also employed HaploReg database v4.1 (Ward and Kellis, 2012) (www.broadinstitute.org/mammals/haploreg/
haploreg.php) to extract publicly available eQTL results from blood tissue for cytokine QTL SNPs.

Genotype-dependent gene expression analysis at rs6834581

The PBMCs from 70 individuals in the Lifelines-Deep cohort (Tigchelaar et al., 2015) were stimulated with or without Candida albicans
as previously described (Smeekens et al., 2013; Kumar et al., 2014b). The RNA sequencing analysis of this dataset has been
described by previously (Li et al., 2016). There were 7 CC, 25 CT and 38 TT individuals carrying these genotypes at rs6834581.
We combined CC and CT in one group and compared the median expression-fold changes of genome-wide transcripts between
two genotype groups (CC+CT versus TT). We focused on the absolute fold changes between these two groups and show the expres-
sion levels of the top 30 genes in Figure S4.

Candidate genes located within a cis-window of approximately 500 kb of all significant cytokine QTL loci were further tested to
see if they responded to any of the pathogens using RNA-seq data from PBMCs of eight individuals, which were stimulated by Pseu-
domonas aeruginosa, Streptococcus pneumoniae, Mycobacterium tuberculosis, Candida albicans, Aspergillus fumigatus, and IL-1a.
(Li et al., 2016).

Intersection of ENCODE enhancers and regions under positive selection

To perform enhancer enrichment analysis on cytokine QTL SNPs, we extracted all proxies for the 17 cQTLs (R? > 0.8; CEU popu-
lation as a reference) to have 186 variants. We then intersected these variants with enhancer data of 127 different cell lines available in
HaploReg tool v4.1 (www.broadinstitute.org/mammals/haploreg/haploreg.php). HaploReg calculates a background frequency of
enhancer overlap in each cell type using two background sets of SNPs. It compares the data with all independent GWAS loci asso-
ciated in the European population, and with a second set of background SNPs consisting of all 1000 Genomes variants with a
frequency > 5%. Initial enrichment of enhancers is calculated using the Binomial test and we applied the Bonferroni correction for
multiple testing to define significance levels (0.05/127 cell lines).

Extraction of infectious disease associated SNPs

SNPs associated with a number of infectious diseases that showed a p value < 9.99 x 10~ were extracted using the GWAS catalog
(http://www.genome.gov/gwasstudies). As of December 2014, there were two studies on leprosy, two studies on malaria, four
studies on tuberculosis, four studies on chronic hepatitis C infection, one study on HPV seropositivity, one study on Dengue shock
syndrome, and one study on meningococcal susceptibility. From a systematic search of the literature, we extracted SNPs associated
with susceptibility to other infectious diseases but not reported in the GWAS catalog. We found three studies on invasive aspergillosis
and two studies on pneumococcal disease (see the list published in Li et al. (2016).

GWAS SNP extraction and enrichment analysis

GWAS SNPs from the GWAS catalog and their proxies (> > 0.8 from a 500 kb window) were first extracted, which provided a list of
SNPs associated to 122 different human traits and diseases. We selected diseases/traits for which at least 10 independent SNPs
were reported to be associated. We then binned these GWAS SNPs into eight categories based on their association to closely related
human phenotypes (cancer, immune-mediated diseases, infectious disease, heart-related traits, blood-related traits, metabolic
traits, height, and Type 2 diabetes-related traits). Duplicated SNPs were removed from further analysis. We then intersected the
SNPs of each category with cQTLs that showed p < 0.05 in our study. The Fisher exact test was applied to test the over-represen-
tation of cQTL SNPs in infectious disease SNPs using the height-associated SNPs as reference.
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Enrichment for positive selection

The cytokine QTLs at different thresholds (1 x 1077,1x10°%1x10751 x 10’4) were intersected with loci under positive selection
(Mathieson et al., 2015). The distribution of positive selection p values on cQTL SNPs were compared with a randomly selected set of
non-significant cQTL SNPs (p > 0.01) by using Kolmogorov-Smirnov test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed in R. Unsupervised hierarchical clustering was performed using Spearman’s correlation as the
measure of similarity. The Levene’s test to check the equality of variance of cytokine levels before and after stimulation. R-package
Matrix-eQTL, was used for cytokine QTL mapping, where linear model was applied with age, gender, and cell-count information
included as covariables. The Fisher exact test was applied to test the over-representation of cQTL SNPs in infectious disease
SNPs using the height-associated SNPs as reference.

DATA AND SOFTWARE AVAILABILITY

Online database

All data used in this project have been meticulously cataloged and archived in the BBMRI-NL data infrastructure (https://hfgp.
bbmri.nl/) using the MOLGENIS open source platform for scientific data (Swertz et al., 2010). This allows flexible data querying
and download, including sufficiently rich metadata and interfaces for machine processing (R statistics, REST API) and using
FAIR principles to optimize Findability, Accessibility, Interoperability and Reusability (Wilkinson et al., 2016).

e6 Cell 767, 1099-1110.e1-e6, November 3, 2016


https://hfgp.bbmri.nl/
https://hfgp.bbmri.nl/

IFNy IL-17

RITRNLIN -

ES pBVC
° Ed ws

0-

O B

log2_Cytokine

IL-6 TNFA

R b

=54
O-

LI B B D R R D R R B DR B R R A D D D e e ) LI D R R R N N D B R R D N R R B R B B B §
SETL2VBEGCLFTSNOMAILOSELE SESLPIEGCLFTINOMACOSESE
5585855233 05E3T2 0382 8585885238 00G5E3L52 533
C06RcEBC8 0" 5203 ros55 S06085c0C8 0" 5203 ra55
S Sog5 ouws 2 333 g SOog5 ouws 2 33
QNTBEFgoN o 2 »w E LTABE oY Ego? o 2 » E£E L TATE
a8 Pm= a0 o c o] = a8 2mM = a0 e} c @ 3=
28Pag08 2 E = ¢ S 3E80g522 2 E = 8 SoE
B2 Ss8E £ o & £Eg& 8SgE & o g

. Moo 2 c 2 Sy Moo <o c 2
ogm P2 § > ogm P22 § .
= S £ o EY o £ %)
Ea T 5% T .
== o3 = (O
<3 S <3 g
E 3 £ 3
< © < ©

Stimulation

Figure S1. Increased Levels of Cytokines upon Stimulation, Related to Figure 1
The box plots of 6 different cytokines in 500 individuals upon stimulation. The y-axis depicts the log2 transformed cytokine levels. The x-axis shows different
stimulations used to induce cytokine production in different tissues. The color legend indicates the different tissue systems used for stimulation.
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Figure S2. Increased Inter-individual Variation upon Stimulation, Related to Figure 1
Box plots of cytokine levels (x axis) induced upon stimulation (y axis) in 500 individuals sorted based on the median values. The color legend shows the different
tissues used for stimulation.
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Figure S3. Genome-wide Significant Cytokine QTLs, Related to Figure 4

(A) Correlation between PBMC-derived cytokines and cell counts.

(B) Summary of all genome-wide significant cytokine QTLs.

(C) Prioritized causal genes by differential expression analysis for genome-wide significant cytokine QTLs.
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Figure S4. TLR1-6-10 Locus Genotype Stratified Gene Regulation upon Candida Stimulation, Related to Figure 5
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Figure S5. Cytokine QTLs for TNF and IL22 Production, Related to Figure 5

(A) Validation of Cryptococcus induced cytokine TNF production.

(B) Regional plot of the association of SLC36A4 locus with S. aureus induced IL-22 levels in PBMCs.
(C) Boxplot of S. aureus induced IL-22 levels in PBMCs at SLC36A4 locus.

(D) Validation of S. aureus induced cytokine IL22 production
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Figure S6. Proportion of Explained Variance of Cytokine Levels by Genetics, Across All the Measurements, Related to Figure 3
A summary of all the estimates of cytokine variance explained by genome-wide SNP data after age, gender, and cell-count correction is shown. The estimates
<25% are shown in gray, and the estimates >50% are shown in black.
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Figure S7. Multidimensional Scale Analysis of Genotype Data from 500FG Cohort, Related to Figures 3 and S6 and STAR Methods
Genome-wide SNP data was used to perform multidimensional scaling analysis across different populations, including 500FG cohort (cohorts are indicated in

different colors). The x axis and y axis indicate the first two principal components differentiating different population cohorts. We analyzed 500FG cohort to map
cytokine production QTLs in this study.



