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SUMMARY

As part of the Human Functional Genomics Project,
which aims to understand the factors that determine
the variability of immune responses, we investigated
genetic variants affecting cytokine production in
response to ex vivo stimulation in two independent
cohorts of 500 and 200 healthy individuals. We
demonstrate a strong impact of genetic heritability
on cytokine production capacity after challenge
with bacterial, fungal, viral, and non-microbial stimuli.
In addition to 17 novel genome-wide significant cyto-
kine QTLs (cQTLs), our study provides a comprehen-
sive picture of the genetic variants that influence six
different cytokines in whole blood, blood mononu-
clear cells, and macrophages. Important biological
pathways that contain cytokine QTLs map to pattern
recognition receptors (TLR1-6-10 cluster), cytokine
and complement inhibitors, and the kallikrein system.
The cytokine QTLs show enrichment for monocyte-
specific enhancers, are more often located in regions
under positive selection, and are significantly en-
riched among SNPs associated with infections and
immune-mediated diseases.

INTRODUCTION

The Human Functional Genomics Project (HFGP) is an initiative

that aims to identify the factors responsible for the variability

of immune responses in health and disease (http://www.
humanfunctionalgenomics.org). Within the HFGP, the 500-Hu-

man Functional Genomics (500FG) cohort focuses on gaining a

broader understanding of the variability in human cytokine re-

sponses. In a first study reported in this issue of Cell, we investi-

gated the role of environmental and non-genetic host factors for

cytokine responses (ter Horst et al., 2016). In the present study,

we investigate the role of genetic variation for individuals human

cytokine responses,while a third complementary study assessed

the impact of microbiome factors (Schirmer et al., 2016).

Many targeted candidate gene studies have demonstrated the

impact of specific genetic variants on immune responses, while

a recent study that assessed the genetics of lipopolysaccharide

(LPS)-induced cytokine responses by dendritic cells identified

several candidate genes (Lee et al., 2014). Furthermore,

genome-wide genetic studies have found genetic variants that

impact transcript abundance for immune genes (so-called

eQTLs [expression quantitative trait loci]) (Kumar et al., 2014a;

Fairfax et al., 2014; Lee et al., 2014), while genome-wide associ-

ation studies (GWASs) have identified hundreds of genetic vari-

ants predisposing to the susceptibility to immune-mediated

diseases and/or their severity (Welter et al., 2014). However,

there have been no comprehensive genome-wide association

studies to investigate variation in cytokine production in humans

so far. As a proof of concept, we assessed the genetics of three

monocyte-derived cytokines (tumor necrosis factor a [TNF-a],

interleukin [IL]-1b, and IL-6) after stimulation with a fewmicrobial

stimuli: we identified four genome-wide loci that influence

cytokine release (Li et al., 2016). This clearly demonstrated the

importance of genetic variation for cytokine production in hu-

mans, and we decided to pursue a more comprehensive

approach to reveal the most important genetic factors that influ-

ence cytokine responses.
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Figure 1. Study Overview

We collected blood samples from 500 healthy individuals in the 500FG cohort and isolated their DNA. This was hybridized on the HumanCoreExome SNP Chip to

provide genotype information on approximately 8 million SNPs. The blood was also used to perform a series of stimulation experiments with major human

pathogens and to profile the cytokines released in the serum (see STAR Methods). See also Figures S1 and S2.
Here, we describe the stimulation of three different cellular

systems (whole blood, peripheral blood mononuclear cells

[PBMCs], and macrophages) with a broad panel of bacterial,

fungal, viral, and non-microbial stimuli to induce cytokine pro-

duction, which was analyzed with approximately 8.0 million ge-

netic variants (SNPs). The discovery was performed in the

500FG cohort, and validation was performed in the 200FG

cohort.Wewere able to validate 17 newgenome-wide significant

loci that represent cytokine QTLs (cQTLs), and we describe new

pathways for the modulation of cytokine responses in humans.

RESULTS

Overview of Cytokine Response Architecture
We assessed cytokine production capacity in the 500FG discov-

ery cohort in three cellular systems: whole-blood stimulations,

PBMC stimulations, and stimulation of monocyte-derived mac-

rophages. We used a comprehensive range of seven bacterial,

three fungal, one viral, four Toll-like receptor (TLR) ligands, and
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two non-microbial metabolic stimuli to assess three monocyte-

derived and three lymphocyte-derived cytokines (see Figure 1

for overview).

Significant increases in the levels of all cytokines were

observed in all stimulation systems compared to steady-state

levels (see also the related paper by Schirmer et al., 2016, for

the main bacterial and fungal stimuli, as well as Figure S1 for a

full description of all stimuli). Cytokines IL-6 and TNF-a from

whole blood and PBMCs showed higher inter-individual variation

than production by macrophages (Figure S2), suggesting that

the in vitro differentiation of macrophages is a process that partly

overrides individual variation. In general, IL-6 showed a much

stronger inter-individual variation than any other cytokines

(p < 0.001), suggesting a much stronger impact of cell types

and/or genetic variation on IL-6 production than other cytokines.

These results were consistent with those we obtained from the

200FG cohort (data not shown).

Unsupervised clustering of the cytokine responses showed a

clear distinction between stimulations with bacteria, fungi, or



Figure 2. The Cytokine Responses Are Organized around the Physiological Response toward Specific Pathogens

(A) The results from unsupervised hierarchical clustering of the cytokine responses in PBMCs induced by various pathogens and microbial ligands are shown.

Clustering was performed using Spearman’s correlation as the measure of similarity. Red indicates a strong positive correlation, whereas blue indicates a strong

negative correlation. Cluster 1 depicts the positive correlation between monocyte-induced cytokines (IL-6, IL-1b, and TNF-a) on stimulation of PBMCs for 24 hr.

Cluster 2 depicts the positive correlation among cytokines derived from T-helper cells (IL-17, IL-22, and IFN-g) on stimulation of PBMCs for 7 days. Cluster 3

depicts the strong correlation between influenza- and Cryptococcus-induced cytokines for both T cell- and monocyte-derived cytokines.

(B) The results from unsupervised hierarchical clustering of the cytokine responses in blood were compared with responses in PBMCs. The stimulation-cytokine

pairs that were available for both cell systems were chosen to perform unsupervised hierarchical clustering. Four different clusters indicate the pathogen-specific

clustering of cytokines. WB, whole blood.
viruses (Figure 2A). Correlations between the productions of

various cytokines were foundmainly for stimulation with a certain

microbe rather than between cytokine productions induced by

different microbes, which suggests that immune responses are

organized to respond to a specific pathogen rather than through

a specific immune pathway. The clustering also revealed a poor

correlation between monocyte-derived- and T-helper-derived

cytokine responses (Figure 2A). This is surprising, as the differen-

tiation of naive T cells into Th1- or Th17-effector lymphocytes

is controlled by monocyte-derived cytokines. However, this

conclusion is also supported by our clustering analyses of

whole-blood stimulations (Figure 2B). An exception to these pat-

terns was the fungalCryptococcus-induced cytokine responses,

in which the distinction between monocyte-derived- and T cell-

derived cytokines was weak. In addition, the Cryptococcus-

induced cytokines were more similar to cytokine responses

induced by influenza virus than to other fungi (Figure 2A).

To assesswhether cell-based factors are the only factor deter-

mining variation in cytokine responses, or whether plasma-

derived factors can qualitatively modulate the responses, we

correlated specific responses in purified PBMCs versus whole-

blood stimulations (Figure 2B). Unsupervised clustering demon-

strated stronger correlations of responses in the two stimulation
systems, but we also found positive correlations between them

(Figure 2B). These findings suggest that, although intrinsic fac-

tors in the mononuclear cells mainly determine the cytokine

response, additional variation in cytokine production may also

be induced by other whole-blood components, such as neutro-

phils or plasma factors.

Contribution of Genetic Variation to How Cytokines
Respond to Pathogens
We observed that cytokines show higher inter-individual varia-

tion upon stimulation (Figure S2). Since a difference in cell-count

proportions can be an important factor influencing the amount

of cytokines produced, we tested whether cell-count differ-

ences determine inter-individual variation in cytokine levels.

For this, we obtained immune-cell-count data measured by

fluorescence-activated cell sorting (FACS) for total lymphocytes,

T cells, B cells, monocytes, and natural killer (NK) cells

from all 500FG individuals (Aguirre-Gamboa et al., 2016). We

observed weak correlations between cell counts and cytokine

levels (Figure S3A), suggesting aminor effect of cell-count differ-

ences on cytokine production capacity. We then estimated the

proportion of cytokine variance explained by genome-wide

SNPs for all cytokine measurements before and after correcting
Cell 167, 1099–1110, November 3, 2016 1101



Figure 3. Proportion of the Estimated Cytokine Variance Explained by Genetic Factors

A summary of all the estimates of cytokine variance explained by genome-wide SNP data after age, gender, and cell-count correction is shown. The esti-

mates <25% are shown in gray, and the estimates >50% are shown in black.

See also Figures S6 and S7 and Table S1.
for age, gender, and cell counts (Figure 3; Figure S3B; Table S1)

using the GREML method (Yang et al., 2010).

In total, for around 70% of all the cytokine responses in

PBMCs, the genetic influence was considerably larger than pre-

viously reported (>25% of explained variance) (Brodin et al.,

2015). We found similar results when we estimated heritability

without correcting age, gender, and cell counts (Table S1). In

general, we found a higher explained variance for monocyte-

derived cytokines from genetic factors (>50% of explained

variance especially for IL-6 and IL1-b) than for T cell-derived cy-

tokines (Figure 3). Finding the strongest inter-individual variation

in IL-6 levels upon stimulation, in addition to the highest heritabil-

ity for IL-6 levels, indicates that theremay bemany genome-wide

significant QTLs for IL-6 in the context of infectious pressure. In

T cell-derived cytokines, we found a higher explained variance

for IL-17 from genetic factors. Although it may be expected

that the cytokine production capacity is affected by genetic fac-

tors, we observed that the estimated explained variance due to

genetic factors differed for the stimulation by the various micro-

organisms and for the individual cytokines studied. This finding

indicates there are genetic variations that may be strongly regu-

lating the cytokine production in response to certain pathogens.

Identifying Genome-wide Genetic Variations Affecting
Cytokine Production in Response to Pathogens
To identify the most significant genetic loci that determine cyto-

kine levels upon stimulation, we mapped cQTLs using genome-

wide SNP genotypes. After correcting for age, gender, and cell

counts, we identified 18 genome-wide (p < 5 3 10�8) significant

lead SNPs in 17 independent loci (Figures 4A and 4B). These
1102 Cell 167, 1099–1110, November 3, 2016
include seven independent QTLs for IL-6, three independent

QTLs for IL-1b, and three independent QTL for TNF-a levels

(Table 1). Of the 17 loci, all but one were identified for cytokines

measured after PBMC stimulations, while one locus on chromo-

some 19 came from the whole-blood stimulation system

(Table 1). We identified cQTLs for both monocyte- and T cell-

derived cytokines upon bacterial and fungal stimulations,

whereas stimulation with purified TLR ligands only yielded

cQTLs for monocyte-derived cytokines (Figure S3B). The validity

of the 17 loci was further corroborated for the 12 cytokine-micro-

bial stimulations that were performed in the 200FG cohort. Of the

cQTLs, 9/12 (75%) were replicated (p < 0.05), and, in all cases,

the effects were in the same direction (Table S2). We could not

replicate five of the cQTLs, as these stimulus-cytokine measure-

ments were not tested in the 200FG cohort. No genome-wide

significant cQTLs were identified for themacrophage production

of cytokines, which agrees with the conclusion that the process

of in vitro differentiation erases many of the differences between

individuals. This conclusion has important consequences, as it

suggests that in-vitro-differentiated cell systems (such as mono-

cyte-derived macrophages or dendritic cells) may not be suit-

able for studying the genetics of cytokine responses.

Prioritizing cQTL-Affected Genes Indicates Those
Involved inMicrobial Sensing and ProcessingMolecules
as Putative Causal Genes
We used three approaches to identify the causal genes at the 17

significant cQTL loci. First, we tested whether the cQTLs were

strongly correlated with other SNPs that alter the protein struc-

ture of any genes. Using the HaploReg SNP annotation tool



Figure 4. Genome-wide Significant Cytokine QTLs and Their Shared Association

(A) A circular Manhattan plot showing the 17 independent genome-wide significant loci associated with different cytokine levels. The cytokine name, type of

stimuli, and the top SNP rs ID is given. Loci that affect fungal-induced cytokines are shown in pink; loci that affect bacterial-induced cytokines are in blue; loci that

affect TLR-ligand-induced cytokines are in green.

(B) The association results of all 17 genome-wide significant cQTLs with all the available cytokine measurements are shown. The color key indicates the range of

cQTL p values (shown as �log10 p value) from p < 0.01 to p < 5 3 10�23. Red indicates the minor allele associated with higher levels of cytokines, while blue

indicates theminor allele associated with lower levels of cytokines. The x axis shows all 17 genome-wide significant loci, and the y axis shows the cytokine-stimuli

pairs. WB, whole blood.

See also Figure S3 and Tables S2 and S3.
(Ward and Kellis, 2012), we extracted all SNPs in linkage disequi-

librium (LD) (R2 > 0.8; using the CEU population as a reference)

with the cQTLs. We found two loci that were in strong LD

with missense variants (Table S3): SNPs rs28393318 and

rs6834581 on chromosome 4 were in strong LD (R2 = 0.97,
D prime = 0.99) with a missense variant, rs4833095, on the

TLR1 gene. SNP rs7256586 on chromosome 19 was in strong

LD with a missense variant rs198977 (R2 = 0.82, D prime =

0.92) on the KLK2 gene. These observations suggest that

TLR1 and KLK2 could be causal genes at these cQTL loci. The
Cell 167, 1099–1110, November 3, 2016 1103



Table 1. Genome-Wide Significant Cytokine QTL Loci

Locus SNPs Chromosome Base Pair Stimulation Cytokine

Cell

System Time p Valuea Causal Genes

1 rs891372 1 207414046 C. burnetii IL-6 PBMC 24 hr 3.2 3 10�9 CD55b,c and CR2b,c

2 rs4496335 2 113844475 Cryptococcus TNF-a PBMC 24 hr 4.2 3 10�9 IL1RNb

3 rs9941692 2 153183071 C. burnetii IL-6 PBMC 24 hr 3.7 3 10�10 FMNL2b and STAM2c

4 rs28393318 4 38784267 Poly(I:C) IL-1b PBMC 24 hr 2.8 3 10�11 TLR1b,c,d, TLR6b,c, TLR10b,c,

and FAM114A1brs6834581 4 38788234 C. burnetii IL-1b PBMC 24 hr 4.6 3 10�13

rs6834581 4 38788234 Poly(I:C) IL-6 PBMC 24 hr 3.9 3 10�25

5 rs351250 5 141286682 C. burnetii IL-6 PBMC 24 hr 3.3 3 10�8 SLC25A2b, PCDH12b, and

KIAA0141c

6 rs543772713 7 6742260 C. albicans TNF-a PBMC 24 hr 4.2 3 10�8 ZNF12e

7 rs10108108 8 5056750 C. albicans IL-22 T cell 7 days 1.5 3 10�8 CSMD1e

8 rs10959009 9 10278031 C. burnetii IL-6 PBMC 24 hr 3.9 3 10�8 PTPRDc

9 rs17615278 10 36600213 Borrelia IFN-g T cell 7 days 3.9 3 10�8 RP11-92J19.3e and RP11-

810B23.1e

10 rs2350821 10 86927851 LPS IL-1b PBMC 24 hr 1.3 3 10�8 RP11-181F12.1e

11 rs10908219 11 69602333 Cryptococcus IFN-g T cell 7 days 1.0 3 10�8 FGF19e, FGF4e, FGF3e, and

MIR3164b

12 rs11020229 11 93000542 S. aureus IL-22 T cell 7 days 2.4 3 10�9 SLC36A4b,c

13 rs10790723 11 124961985 C. burnetii IL-1b PBMC 24 hr 1.0 3 10�8 SLC37A2b,c and AP001007.1b

14 rs7310164 12 56185207 C. burnetii IL-6 PBMC 24 hr 4.7 3 10�9 ITGA7b,c, CD63c, and MMP19b

15 rs11103976 12 86908614 Borrelia IFN-g T cell 7 days 9.2 3 10�9 MGAT4Ce

16 rs4491463 15 36645770 E. coli TNF-a PBMC 24 hr 1.2 3 10�10 RP11-47513.1e and

RP1147513.2e

17 rs7256586 19 51390809 C. albicans IL-6 Blood 48 hr 8.5 3 10�9 KLK2d and KLK4e

aCytokine QTL p values are derived after correcting for age, gender, and cell-count levels.
bExpression QTL results in blood show a correlation between cytokine QTL SNP and the expression of that gene.
cThe gene is differentially expressed in response to microbial stimulation in PBMCs.
dCytokine QTL SNP is in linkage disequilibrium with a missense variant within that gene.
eThe closest gene to the cytokine QTL is shown.
other 15 cQTLs and their proxies are all located in non-coding re-

gions of the genome, suggesting a possible regulatory function

of cQTL loci.

As a second approach, we performed cis-eQTL mapping us-

ing RNA-sequencing (RNA-seq) data and genotype data from

629 healthy-donor blood samples (LifeLines-Deep cohort)

(Ricaño-Ponce et al., 2016; Tigchelaar et al., 2015) as well as

eQTL results obtained from publicly available datasets provided

by HaploReg (Ward and Kellis, 2012).

As a third approach, we hypothesized that the genes that are

differentially regulated in response to different microbial stimuli

are the potential causal genes at our cQTL loci. To test this, we

extracted all the genes, including the non-coding genes, located

in a 500-kb cis-window of the 17 cQTLs and tested their expres-

sion in PBMCs stimulated with different microbial antigens (Fig-

ure S3C). By combining these three approaches, we identified 21

putative causal genes in 12 of the loci (Table 1). In the remaining

five loci, the gene nearest to the cQTL SNP is shown. Intriguingly,

the genes we identified by these three approaches were all

regulatory genes modulating cytokine production, rather than

eQTLs directly modulating the transcription of cytokine genes

and the production of cytokines themselves. The identified

genes were mainly involved in microbial sensing (TLR1, TLR6,
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TLR10, CSMD1, CD63, CR2, and CD55), processing molecules

(SLC36A4 and SLC37A2), endoplasmic reticulum organization,

and cytokine signaling (IL1F10, IL1RN, and STAM2).

TLR1-TLR6-TLR10 Locus Is Associated with Cytokine
Production Capacity for Diverse Stimulations
The strongest association among the 17 cQTL loci was at the

TLR1-TLR6-TLR10 locus (Figures 5A and 5B) on chromosome

4, influencing poly(I:C)-induced IL-6 (p = 3.93 3 10�25) and IL-

1b levels (p = 2.47 3 10�10) in PBMCs. This locus also showed

significant association with Coxiella burnetii-induced IL-1b

(p = 4.62 3 10�13) and TNF-a (p = 7.59 3 10�8) levels, as well

as moderate association with 20 different cytokine levels

(false-discovery-rate [FDR]-corrected p < 0.05) in response to

multiple other microbial stimulations (Figure 4B). This locus

was also found to be under strong evolutionary selection (dis-

cussed later). Since we also had full transcriptomics data ob-

tained by RNA-seq on PBMCs from 70 healthy individuals in

the Lifelines-Deep cohort (Tigchelaar et al., 2015) stimulated

with Candida albicans, we were able to construct co-expression

networks for the various alleles of the TLR1-TLR6-TLR10 locus.

Our pathway analysis showed an interesting differential induc-

tion of genes that are important for cytokine regulation and



Figure 5. Regional Association Plots and Boxplots for Cytokine QTLs

(A–D) Regional association plots at (A) the TLR10-TLR1-TLR6 locus associated with poly(I:C)-induced IL-6 levels and (C) the IL1F10-IL1RN locus associated with

Cryptococcus-induced TNF-a levels. The corresponding p values (as �log10 values) of all SNPs in the region were plotted against their chromosomal position.

Estimated recombination rates are shown in blue to reflect the local LD structure (based on the CEU population) around the associated top SNP and its correlated

proxies (with bright red indicating highly correlated and pale red indicating weakly correlated). Boxplots in (B) and (D) show the genotype-stratified cytokine levels

for the TLR and IL1RN loci, respectively.

See also Figures S4 and S5.
dependent on the cytokine-inducing allele (rs6834581*C) or the

alternative allele (rs6834581*T) (Figure S4). Many of these differ-

entially regulated genes have been shown to be important for

cytokine regulation; for example, TREML4 encodes for a protein

crucial for TLR7 signaling and antiviral defense (Ramirez-Ortiz

et al., 2015), and SCGB3A1 encodes for the cytokine-like secre-

toglobin family 3Amember 1 (or HIN-1), which plays an important

role in lung inflammation (Yamada et al., 2009).
IL1F10-IL1RN Locus Is a Shared QTL for Cryptococcus-
and Influenza-Induced Cytokines
We found a significant cQTL for TNF-a levels in response

to Cryptococcus (Figures 5C and 5D) on chromosome 2

(p = 4.223 10�9). The same SNP (rs4496335) also has an effect

on the expression of genes in the IL-1F10-IL1RN locus that en-

codes the IL-1 receptor antagonist. This locus also showed

moderate association with IL-6 (3.38 3 10�6) and IL-1b levels
Cell 167, 1099–1110, November 3, 2016 1105



(5.51 3 10�6) in response to Cryptococcus. IL-1Ra is a known

natural antagonist of the IL-1 receptor pathway, but it was not

knownwhether this also influencesCryptococcus-induced cyto-

kine production. In order to validate this finding, we performed a

series of experiments in which we show that pre-incubation of

PBMCs with IL-1Ra significantly inhibits the induction of cyto-

kines by Cryptococcus (Figure S5A). This is the only locus

in our 17 cQTL loci that was also moderately associated with

influenza-induced TNF-a, IL-1b, and IL-6 levels (Figure 4A).

Unsupervised clustering analysis of cytokines (Figure 2A)

showedmuch stronger similarities between influenza- andCryp-

tococcus-induced responses than between Cryptococcus and

other fungi-induced responses, suggesting that these two path-

ogens activate similar inflammatory pathways. This association

warrants further study.

CSMD1 and SLC36A4 Loci Specifically Regulate T
Cell-Derived Cytokines
We quantified three T cell-derived cytokines (IL-22, IL-17, and

interferon [IFN]-g) after stimulating PBMCs for 7 days with

various stimuli. We found three genome-wide significant loci

for IFN-g and two for IL-22 levels (Table 1). The strongest

association in these five loci was at the SLC36A4 locus on chro-

mosome 11 (Figures S5B and S5C), with Staphylococcus

aureus-induced IL-22 levels (p = 2.42 3 10�9). SLC36A4 en-

codes for an amino-acid transporter with a high affinity for

glutamine, tryptophan, and proline (Pillai and Meredith, 2011).

Amino-acid metabolism (especially tryptophan and glutamine)

has been reported to modulate cytokine production (Bosco

et al., 2000; Coëffier et al., 2001; Harden et al., 2015). We vali-

dated this pathway in our study by showing that blocking

glutaminolysis with BPTES (bis-2-(5-phenylacetamido-1,3,4-

thiadiazol-2-yl)ethyl sulfide) significantly inhibits S. aureus-

induced IL-22 production (Figure S5D). The other cQTL for

C. albicans-induced IL-22 levels was found on chromosome 8

(p = 2.42 3 10�9) on the CSMD1 gene. CSMD1 encodes a pro-

tein that functions as a complement inhibitor (Escudero-Esparza

et al., 2013), and recent studies have shown that IL-22 and the

complement pathway influence each other and synergize during

host defense against pathogens (Yamamoto and Kemper, 2014).

The importance of the complement pathway for modulating

cytokine production is underscored by the presence of CR2

and CD55 among the genes whose genetic variation regulates

cytokine production (Table 1).

Finally, we tested whether the five independent T cell cytokine

QTLs were also associated with other cytokines. Although they

were moderately associated with cytokines produced in

response to other types of stimuli (e.g.,Mycobacterium tubercu-

losis, Cryptococcus; see Table 1), CSMD1 and SLC36A4 loci

were specifically associated with IL-22 and IFN-g production

capacity.

KLK2-KLK4 Locus Is Significantly Associated with IL-6
Levels in Whole-Blood Stimulation
We quantified IL-6, IL-1b, TNF-a, and IFN-g after stimulating

whole blood for 48 hr with various stimuli. We identified one locus

on chromosome 19 as significantly associated (p = 8.503 10�9)

with C. albicans-induced IL-6 levels. This locus encodes for kal-
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licrein-related peptidases 2 and 4 (KLK2 and KLK4); the latter

has been described as inducing IL-6 production through activa-

tion of protease-activated receptor 1 (PAR-1), a well-known

immune-activated receptor (Wang et al., 2010). This locus is

also moderately associated with both monocyte- and T cell-

derived cytokines in response to multiple microbial stimulations

(Figure 4A).

cQTLs Are Enriched for Regions under Positive
Selection and Monocyte-Specific Enhancers and Are
Associated with Complex Human Diseases
Some of the cQTL loci were common to several stimuli, but many

were stimulus specific (Figure 4B). This finding supports the

conclusion that the cytokine response is evolutionarily built

around the response to specific pathogens, a process most

likely shaped by the selective evolutionary processes exerted

by local infections in certain geographical locations. This is

also supported by our observation that the cQTL genes are un-

der strong selective pressure. We intersected our 17 cQTLs

with the regions in the human genome catalogued as ‘‘loci under

positive selection’’ in 230 ancient Eurasian genomes (Mathieson

et al., 2015). Our cQTLs were significantly enriched (Kolmo-

gorov-Smirnov test, p value < 0.01) for ‘‘genes under positive

selection’’ in the Eurasian genomes (Figure 6A), including the

well-known TLR1-TLR6-TLR10 and LCT loci.

The fact that themajority of the cQTL loci were in LDwith SNPs

in non-coding regions means that they could have regulatory

functions. Therefore, we intersected these 17 top cQTLs and

their proxies (r2 % 0.8) with the ENCODE-defined cell-type-

specific enhancers. This showed a significant enrichment of

these cQTLs in monocyte-specific enhancers (Figure 6B), sug-

gesting that many of the cQTLs influence gene expression in

monocytes and, thereby, alter cytokine production. We also

tested whether the 17 cQTLs are associated with human dis-

eases. We intersected the cQTLs with GWAS SNPs known to

influence susceptibility to various immune-mediated diseases.

Interestingly, SNPs that affect monocyte-derived cytokines are

also enriched for SNPs associated with infectious diseases (Fig-

ure 6C). In contrast, cQTLs that affect T cell-derived cytokines

are enriched for SNPs associated with autoimmune diseases

(Figure 6D). In addition, we identified a trend for the association

of cQTLs with SNPs associated with other complex human phe-

notypes, such as blood-related traits and cancer (Figure 6E).

These results suggest that proinflammatory cytokines have an

important role as underlying mediators in many complex human

diseases.

DISCUSSION

In three complementary studies in this issue ofCell, we report on

the impact of genetic (the present study), environmental (ter

Horst et al., 2016), andmicrobiome (Schirmer et al., 2016) factors

on the cytokine production capacity in a large cohort of healthy

individuals of Western European background. The present study

is broad both at the genomic level (8 million SNPs) and at a func-

tional level: we assessed three types of cellular stimulation

models (whole blood, PBMCs, and monocyte-derived macro-

phages) challenged with a comprehensive panel of bacterial,



Figure 6. Cytokine QTLs Are Enriched for

Human Diseases

(A) A Q-Q plot showing the enrichment of cytokine

QTLs is under positive selection. The cytokine

QTLs were intersected with loci under positive

selection and tested for their inflation compared to

a randomly selected set of SNPs.

(B) Impact of genome-wide significant cytokine

QTLs on human diseases. All 17 cQTL loci and their

proxies (R2 > 0.8) were intersected with cell-type-

specific enhancers from the ENCODE project. The

x axis depicts the �log10 binomial uncorrected

p values; the y axis shows the different cell types.

The dotted gray line indicates the significance

threshold after Bonferroni correction for the num-

ber of cell types tested. Different colors indicate the

two sets of background SNPs included for testing

enrichment of cQTLs located in any cell-type-

specific enhancers.

(C and D) The percentages of SNPs associated

with (C) infectious disease and (D) immune-medi-

ated diseases that affect either monocyte-derived

or T cell-derived cytokines levels are shown.

(E) The percentage of disease-associated SNPs

showing suggestive cytokine QTLs. GWAS SNPs

and their proxies from each disease were

compared to SNPs associated with ‘‘height,’’ a trait

serving as a reference (null) set. The p values of

enrichment analysis from Fisher exact tests are

indicated by asterisks (**p < 10�4). T2D, type 2

diabetes.
fungal, viral, and non-microbial metabolic stimuli. The data pre-

sented here support the hypothesis that genetic variation is one

of themain factors influencing cytokine responses, with variation

of several cytokines, especially the IL-1b/IL-6 pathway, being

mainly regulated by genetic factors (Figures S6 and S7). In line

with this, we identify 17 new genome-wide significant loci that in-

fluence cytokine production, and we provide genetic and func-

tional validation for their biological importance.

The conclusion that there is a high genetic heritability of cyto-

kine production capacity in the context of microbial stimulation is

supported by a recent study showing a strong genetic compo-

nent in the regulation of multiple immune traits in twins (Roederer

et al., 2015). The genes we identify as cytokine regulators can be

grouped into two processes: (a) innate immune genes, such as

the pattern recognition receptors (e.g., the TLR1/6/10 cluster),

and complement modulators; and (b) genes important for anti-

gen processing in the endoplasmic reticulum. Among this last

groups of genes, one of them (SLC36A4) is also an amino acid

transporter, particularly for tryptophan, proline, and glutamine
Ce
(Pillai and Meredith, 2011), and we have

here validated the role of glutamine

metabolism in the induction of IL-22

responses.

The identification of cell-type-depen-

dent cQTLs and their potential relevance

for infectious and autoimmune diseases

in humans is of considerable interest.

Our results imply that monocyte-derived
cQTLs are associated to a susceptibility to infections, while

T cell-derived cQTLs overlap with loci associated to autoimmune

diseases. This result has important implications, as it provides a

model to gain insight into the mechanistic basis of disease asso-

ciations in a cell-type-specific manner. This important finding is

underpinned by another HFGP study by Aguirre-Gamboa et al.

(2016), which describes cell-count QTLs that influence lympho-

cyte numbers being associated with susceptibility to autoim-

mune diseases. We were also able to further dissect the impact

of the various cQTLs for different pathologies and have, for

example, gained important new insight into the preferential

impact of monocyte-derived cQTLs for blood-related (hemato-

logical) diseases, while these are seen to be less strongly

involved in autoimmune diseases or cancer.

We also extracted additional important biological properties

characterizing cytokine responses. First, we observed a surpris-

ingly small impact of cell numbers on cytokine production ca-

pacity, even in the case of whole-blood stimulation, with only a

few exceptions showing a moderate impact. This conclusion is
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supported by the results of a previous study published by our

group (Li et al., 2016) and demonstrates that the most important

impact on cytokine secretion is determined by the intrinsic

cellular characteristics. Second, we identified an important

pattern in the architecture of cytokine responses: the production

capacity of various monocyte-derived or lymphocyte-derived

cytokines correlated strongly when cells were stimulated with a

specific pathogen, whereas the correlation was poor when

comparing bacterial stimuli with fungal and viral stimuli. This

makes sense from an evolutionary point of view, as immune re-

sponses mainly need to have plasticity to respond to specific in-

fectious pressures in any given geographic area (Netea et al.,

2012). This conclusion is supported by the enrichment of cQTL

genes among the genes recently reported to be under selection

in Eurasian populations (Mathieson et al., 2015). Finally, nearly all

the cQTLs described here are trans-QTLs, and they were signif-

icantly enriched in monocyte-specific enhancers. This suggests

that many cQTLs influence the expression of target genes in

monocytes to alter cytokine production indirectly.

There are also a number of limitations to the present study. It is

possible that we may have underestimated the heritability of

cytokine responses by performing a SNP-based analysis. To

address this aspect, it will be interesting in the future to assess

the heritability of cytokine responses using longitudinal data,

as this will allow us to take other factors (e.g., seasonal variation)

into account. Moreover, future twin-based studies could take

the stimulation aspect into account when performing the herita-

bility estimation of immune parameters. In addition, although

this is the most comprehensive study on cytokine production

in humans so far, the number of cytokines measured is still

relatively limited. We have chosen to study the most important

proinflammatory cytokines produced by monocytes, Th1 and

Th17 cells; however, future studies should also include other

classes of cytokines, such as anti-inflammatory cytokines,

IFNs, or chemokines.

In conclusion, we present a comprehensive analysis of how

genetic variation affects cytokine production capacity in hu-

mans. Our study should be considered in the broader framework

of the HFGP, in which environmental, non-genetic host factors

and the microbiome have also been shown to influence immune

responses (see the accompanying studies by ter Horst et al.,

2016, and Schirmer et al., 2016, in this issue). In a first study,

we show that age is an important factor, with a specific defect

of IFN-g and IL-22 production in the elderly (ter Horst et al.,

2016): future studies in a population of elderly individuals should

assesswhether the genetic factors identified here also play a role

in this process. Similarly, gender and seasonality also influence

immune responses. In addition, the accompanying study by

Schirmer et al. demonstrates the impact of microbiome vari-

ability on cytokine responses. Although it is important to note

that the microbiome has an important role, it does seem to

have a smaller impact on cytokine production than host genetic

factors: while we observe here a 25% to 75% genetic heritability

for most of the cytokines mentioned, the microbiome variation

explains up to 10% of the cytokine production capacity

(Schirmer et al., 2016).

However, the genomic variation may act either directly or indi-

rectly through impactingonother factors, e.g., themicrobiome. In
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this respect, recent studies have reported host genetic factors

that influence the microbiome (Bonder et al., 2016; Davenport

et al., 2015; Goodrich et al., 2016; Knights et al., 2014): future

studies in theHFGPplan to integrate the complex patient-related

and omics databases into comprehensive models to explain

cytokine production and other complex immune traits. These

complementary studieswill be important in understanding the in-

fluences on human cytokine responses and their variation and

canbe used to pinpoint factors that can bemodified and targeted

for the personalized treatment of immune-mediated diseases.

Finally, the HFGP in general, and these three studies reported

in this issue of Cell in particular, offer an important methodology

beyond the analyses of cytokine responses, because they pro-

vide a framework for future functional genomics studies looking

to assess immune and non-immune biological processes.
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R programming language R Development Core Team, 2015.
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statistical computing. R Foundation for

Statistical Computing, Vienna, Austria.

https://www.R-project.org/
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R Development Core Team, 2015.
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statistical computing. R Foundation for

Statistical Computing, Vienna, Austria.

https://www.R-project.org/

RNA sequencing mapping: STAR
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RNA read counting: HTSeq

(version 0.5.4p3)
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Ethics statement
The HFGP study was approved by the Ethical Committee of Radboud University Nijmegen, the Netherlands (no. 42561.091.12). Ex-

periments were conducted according to the principles expressed in the Declaration of Helsinki. Samples of venous bloodwere drawn

after informed consent was obtained.

Population cohorts
The study was performed in two independent cohorts of �500 and �200 healthy individuals of Western European ancestry from the

Human Functional Genomics Project (500FG and 200FG cohorts, see www.humanfunctionalgenomics.org). The 500FG cohort com-

prises 534 adults fromNijmegen, the Netherlands (237males and 296 females, age range 18–75 years). The 200FG cohort comprises

Individuals from the ‘Geldersch Landschap’, ‘Hoge Veluwe’, ‘Twickel’, and ‘Kroondomein het Loo’ in the Netherlands (77% males

and 23% females, age range 23-73 years old).

Stimuli
Bacteria

Bacteroides fragilis (NCTC 10584) grown anaerobically overnight at 37�C on blood agar plates (BD Biosciences, Franklin Lakes) was

inoculated in 20 mL pre-warmed and pre-reduced Brain Heart Infusion broth (BD Diagnostics, Basel) and again grown anaerobically

overnight at 37�C until reaching a stationary growth phase mimicking growth conditions in abscesses. Bacterial suspensions were

washed three times in phosphate-buffered saline (PBS; B. BraunMedical B.V., Melsungen) and heat-killed at 95�C for 30min. Before
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heat-killing, aliquots of bacterial suspensions were taken to determine colony-forming unit (CFU) counts. Heat-killed bacteria were

washed again and after adjusting the concentration in PBS to 13 108 CFU/mL, stored at –80�C.B. fragiliswas used in the stimulation

experiments as 1 3 106/mL.

E. coli ATCC 25922 was grown overnight in culture medium, washed three times with PBS, and heat-killed for 60 min at 80�C.
Staphylococcus aureus strain ATCC 29213 was grown overnight in culture medium, washed twice with cold PBS, and heat-killed

for 30 min at 100�C; both E. coli and S. aureus were used in a final concentration of 1 3 106/mL. Success of heat-inactivation

was confirmed by cultures.

LPS (E. coli serotype 055:B5), a TLR4 ligand, was purchased from Sigma-Aldrich (St. Louis) and an extra purification step was per-

formed as described previously (Hirschfeld et al., 2000). Purified LPS was tested in TLR4�/� mice for the presence of contaminants

and did not show any TLR4-independent activity. CpG (ODN M362) was purchased from InvivoGen (San Diego) and used at a final

concentration of 10 mg/mL.

Cultures of H37Rv Mycobacterium tuberculosis (MTB) were grown to mid-log phase in Middlebrook 7H9 liquid medium (Difco,

Becton Dickinson, East-Rutherford) supplemented with oleic acid/albumin/dextrose/catalase (OADC) (BBL, Becton Dickinson),

washed three times in sterile saline solution, heat-killed and then disrupted using a bead beater, after which the concentration

was measured using a bicinchoninic acid (BCA) assay (Pierce, Thermo Scientific, Rockville).

C. burnetii Nine Mile RSA493 (NM) phase I (a gift from the Bundeswehr Institute for Microbiology, Munich, Germany) was cultured

on buffalo green monkey cells, and the numbers of Coxiella DNA copies were determined using TaqMan real-time polymerase chain

reaction as described (Roest et al., 2012). Lipopolysaccharide (LPS) phase determination was performed by sodium dodecyl sulfate

polyacrylamide gel electrophoresis and silver staining, using purified phase I (RSA493) and phase II (RSA439) C. burnetii NM LPS

(kindly provided by R. Toman) as controls (Hitchcock and Brown, 1983; Schramek and Galanos, 1981). C. burnetii was inactivated

by heating for 30 min at 99�C.
B. burgdorferi, ATCC strain 35210, was cultured at 33�C in Barbour-Stoenner-Kelley (BSK)-H medium (Sigma-Aldrich) supple-

mentedwith 6% rabbit serum. Spirochetes were grown to late-logarithmic phase and examined formotility by dark-fieldmicroscopy.

Organisms were counted using a Petroff-Hauser counting chamber. Bacteria were harvested by centrifugation of the culture at

3000 g for 30 min, washed twice with sterile PBS (pH 7.4), and diluted in the specified medium to the required concentrations of

1 3 106 spirochetes per mL. The serum-resistant Salmonella typhimurium strain (phage type 510) was grown at 37�C for 12 hr in

nutrient broth (BHI Oxoid, Nepean). Bacteria were collected and centrifuged and then washed three times in PBS. Aliquots were

stored at –20�C throughout the study.

Fungi

Heat-killed C. albicans blastoconidia (strain ATCC MYA-3573, UC 820) in a concentration of 106 CFU/mL were used throughout

this study. A clinical isolate of Aspergillus fumigatus V05-27 was used for stimulations. Isolates were grown on YAG agar plates

for 3 days at 37�C. Fungal spores in the presence of sterile 0.1% Tween 20 in PBS were harvested by gentle shaking, washed

twice with PBS, filtered through a 40-mm pore size cell strainer (Falcon, Vienna) to separate conidia from contaminating

mycelium. They were then counted by a hemacytometer, suspended at a concentration of 108 spores/mL and heat-killed. A final

concentration of 1 3 107/mL was used in the experiments. A clinical isolate of Cryptococcus gattii (A1M-R265, AFLP type 6)

was freshly grown on Sabouraud dextrose agar plates. Afterward a suspension in PBS was heat-killed at 56�C for 24 hr and

then quantified at a wavelength of 530 nm on a spectrophotometer. Killing efficiency as well as bacterial and fungal contami-

nation was checked using Sabouraud dextrose and blood agar plates, respectively. Aliquots were stored at –20�C throughout

the study.

Influenza virus culture and inactivation. Influenza virus strain pH1N1 A/Netherlands/602/09 (kindly provided by Prof. Ron Fouchier,

Erasmus MC, Rotterdam) was grown in the allantoic fluid of embryonated chicken eggs. Viral titers were determined by three inde-

pendent plaque assays performed on Madin-Darby canine kidney (MDCK) cells. To inactivate the pH1N1 strain, b-propiolactone

(BPL) (Acros Organics, Morris Plans) in citrate buffer (125 mM sodium citrate, 150 mM sodium chloride [pH 8.2]) was added to

the pH1N1 virus to a final concentration of 0.1% and incubated for 24 hr at 4�C under continuous slow shaking. Inactivated virus

was subsequently snap-frozen and stored at –80�C. Virus inactivation was confirmed by three passages in MDCKs where no virus

could be detected by plaque assay following the third passage.

TLR ligands and non-microbial stimuli

Pam3Cys, a TLR1/2 ligand, was purchased at EMC microcollections (L-2000) and used in a final concentration of 10 mg/mL.

PolyI:C, a TLR3 ligand, was purchased from InvivoGen and used at a final concentration of 100 mg/mL. PHA was purchased from

Sigma and used at a final concentration of 10 mg/mL. Palmitic acid was purchased from Sigma-Aldrich. Human albumin (Albuman)

was purchased from Sanquin (Amsterdam). Stock palmitic acid was dissolved in 100% ethanol. Palmitic acid (C16.0) and human

albumin were conjugated by warming to 37�C in a water bath before adding together in a 1:5 ratio. The mixture was sonicated for

20–25 min and kept at 37�C until use. The vehicle control for 50 mM C16.0 consisted of 0.025% albumin and 0.025% ethanol.

MSU crystals were formed by dissolving 1.0 g of uric acid and 0.48 g sodium hydroxide in 400 mL of sterile water. The pH was

adjusted to 7.2 and the solution was sterilized by heating it for 6 hr at 120�C. No LPS contamination was detected by Limulus amoe-

bocyte lysate assay.
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METHOD DETAILS

PBMC collection and stimulation experiments
After obtaining informed consent, venous blood was drawn from the cubital vein of volunteers into 10 mL EDTA Monoject tubes

(Medtronic, Dublin). The PBMC fraction was obtained by density centrifugation of EDTA blood diluted 1:1 in pyrogen-free saline

over Ficoll-Paque (Pharmacia Biotech, Uppsala). Cells were washed twice in saline and suspended in medium (RPMI 1640) supple-

mentedwith gentamicin (10mg/mL), L-glutamine (10mM) and pyruvate (10mM). Addition of antibiotics such as gentamycin is a stan-

dardmethod used to avoid contamination of cultures, and it does not influence the ability to induce cytokine production by PBMCs or

macrophages (data not shown). The cells were counted in a Coulter counter (Beckman Coulter, Pasadena) and the number was

adjusted to 53 106 cells/mL. A total of 53 105 PBMCs in a total volume of 200 mL per well were incubated at 37�C in round-bottom

96-well plates with the different stimuli, as indicated above. After 24 h (for early cytokines IL-1b, TNF-a, IL-6, IL-8, and IL-10), or

7 days of incubation (for IFN-g and IL-17), supernatants were collected and stored at –20�C until assayed. The stimulation periods

were chosen based on extensive studies that showed that 24 hr stimulation was best suited for assessing monocyte-derived cyto-

kines. When cells were cultured for 7 days, this was done in the presence of 10% human pooled serum.

For validation experiments, PBMCswere incubated with recombinant IL-1Ra (R&D Systems, Minneapolis) 10 mg/ml, 30 min before

stimulation with C. neoformans. The cytokine production capacity in the absence or presence of IL-1Ra was measured in the super-

natants as described above.

Macrophage differentiation and stimulation
We cultured > 53 105 monocytes in flat-bottom plates with 10% human serum at 37�C and 5%CO2 for 6 days. After differentiation,

the medium was removed and the differentiated macrophages were stimulated for 24 hr. Supernatants were collected and stored

in –20�C until used for ELISA.

Whole-blood stimulation experiments
100 mL of heparin blood was added to a 48-well plate and then stimulated with 400 mL stimulus (final volume 500 ml) for 48 hr at 37�C
and 5%CO2. Supernatants were collected and stored in –20�C until used for ELISA.

Cytokine measurements
Concentrations of human IL-1b, IL-6, IL-10, TNF-a, IL-17, or IFN-g were determined using specific commercial ELISA kits (PeliKine

Compact, Amsterdam, or R&D Systems), in accordance with the manufacturer’s instructions. Detection limits were 31 pg/mL (IL-6

(macrophages), 39 pg/mL (IL-1b and IFNg), 156 pg/mL (IL-6 (whole blood), IL-22) or 78 pg/mL (TNF-a and IL-17).

Cytokine clustering and variance analysis
Raw cytokine levels were first log-transformed, and cytokine measurements showing little/no variation across individuals were

filtered out for the follow-up analysis. We excluded 17 stimulation-cytokine measurements that did not pass our quality control. Un-

supervised hierarchical clustering was performed using Spearman’s correlation as the measure of similarity. We used Levene’s test

to check the equality of variance of cytokine levels before and after stimulation.

Genotyping, quality control and imputation
DNA samples of 500 individuals were genotyped using the commercially available SNP chip, Illumina HumanOmniExpressExome-8

v1.0. The genotype calling was performed using Opticall 0.7.0 (Shah et al., 2012) using default settings. Samples with a call

rate % 0.99 were excluded from the dataset, as were variants with a Hardy-Weinburg equilibrium (HWE) % 0.0001, call

rate % 0.99 and minor allele frequency (MAF) % 0.001. We identified 17 ethnic outliers by merging multi-dimensional scaling plots

of samples with 1000Genomes data and these were excluded from further analysis (Figure S7). This resulted in a dataset of 483 sam-

ples containing genotype information on 518,980 variants for further imputation. The strands and variant-identifiers were aligned to

the referenceGenome of the Netherlands (GoNL, Genome of theNetherlands Consortium, 2014) dataset usingGenotypeHarmonizer

(Deelen et al., 2014a). The data were phased using SHAPEIT2 v2 (Delaneau et al., 2013) using GoNL as a reference panel. Finally,

these data were imputed using IMPUTE2 (Howie et al., 2011) with GoNL as the reference panel (Deelen et al., 2014b). We selected

SNPs that showed an INFO score R 0.8 upon imputation for further cytokine QTL mapping.

Cytokine QTL mapping
Both genotype and cytokine data could be generated for a total of 442 individuals.We obtained cell count datameasured by FACS for

total lymphocytes, T cells, B cells, monocytes and NK-cells from 487 individuals from the 500FG cohort. In total, there were 409 sam-

ples with genotype, cytokine, and cell-count data.We excluded 17 samples due to genetic differences.We coded gender information

either 0 for females or 1 for males. The actual age, gender, and cell-count information were included as covariables in the linear model

to correct the cytokine distributions for QTL mapping. Raw cytokine levels were first log-transformed then mapped to genotype data

using a linear regression model with age and gender as covariates. Since the stimulation-cytokine combinations cannot be regarded

as completely independent (we observed strong correlations in the cytokine clustering analysis we performed), the total number of
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independent tests among all phenotypeswill bemuch less than the number of phenotypesmeasured, and therefore correcting for the

number of SNPs tested for each trait should be sufficient. We considered a p value of < 5 3 10�8 to be the threshold for significant

cytokine QTLs.

Cytokine heritability estimation
Using the GCTA tool (Yang et al., 2010), we fitted a linear mixed model to each of the 112 cytokine phenotypes and used restricted

maximum likelihood to estimate the variance explained by the approximately 8 million SNPs. Following our method for cQTL map-

ping, we also included age, gender, and cell counts as covariates for estimating the proportions of phenotypic variance explained by

the SNPs. It should be noted that the 95% confidence intervals for the heritability estimate are wide due to the sample size (N < 1000)

in this study (Zaitlen and Kraft, 2012).

Expression QTL analysis to prioritize causal genes
RNA sequencing of 629 peripheral blood samples from the LifeLines-Deep cohort (Tigchelaar et al., 2015) were investigated to map

cis-eQTLs. The eQTLmapping strategy and data have been described in detail (Ricaño-Ponce et al., 2016). Briefly, cis-eQTL analysis

was performed on transcript-SNP combinations for which the distance from the center of the transcript to the genomic location of the

SNP was% 500 kb. Associations were tested by non-parametric Spearman’s rank correlation test and a p value < 0.05 was consid-

ered significant. We also employed HaploReg database v4.1 (Ward and Kellis, 2012) (www.broadinstitute.org/mammals/haploreg/

haploreg.php) to extract publicly available eQTL results from blood tissue for cytokine QTL SNPs.

Genotype-dependent gene expression analysis at rs6834581
The PBMCs from 70 individuals in the Lifelines-Deep cohort (Tigchelaar et al., 2015) were stimulated with or withoutCandida albicans

as previously described (Smeekens et al., 2013; Kumar et al., 2014b). The RNA sequencing analysis of this dataset has been

described by previously (Li et al., 2016). There were 7 CC, 25 CT and 38 TT individuals carrying these genotypes at rs6834581.

We combined CC and CT in one group and compared the median expression-fold changes of genome-wide transcripts between

two genotype groups (CC+CT versus TT).We focused on the absolute fold changes between these two groups and show the expres-

sion levels of the top 30 genes in Figure S4.

Candidate genes located within a cis-window of approximately 500 kb of all significant cytokine QTL loci were further tested to

see if they responded to any of the pathogens using RNA-seq data from PBMCs of eight individuals, which were stimulated by Pseu-

domonas aeruginosa, Streptococcus pneumoniae,Mycobacterium tuberculosis, Candida albicans, Aspergillus fumigatus, and IL-1a

(Li et al., 2016).

Intersection of ENCODE enhancers and regions under positive selection
To perform enhancer enrichment analysis on cytokine QTL SNPs, we extracted all proxies for the 17 cQTLs (R2 R 0.8; CEU popu-

lation as a reference) to have 186 variants.We then intersected these variants with enhancer data of 127 different cell lines available in

HaploReg tool v4.1 (www.broadinstitute.org/mammals/haploreg/haploreg.php). HaploReg calculates a background frequency of

enhancer overlap in each cell type using two background sets of SNPs. It compares the data with all independent GWAS loci asso-

ciated in the European population, and with a second set of background SNPs consisting of all 1000 Genomes variants with a

frequency > 5%. Initial enrichment of enhancers is calculated using the Binomial test and we applied the Bonferroni correction for

multiple testing to define significance levels (0.05/127 cell lines).

Extraction of infectious disease associated SNPs
SNPs associated with a number of infectious diseases that showed a p value < 9.993 10�6 were extracted using the GWAS catalog

(http://www.genome.gov/gwasstudies). As of December 2014, there were two studies on leprosy, two studies on malaria, four

studies on tuberculosis, four studies on chronic hepatitis C infection, one study on HPV seropositivity, one study on Dengue shock

syndrome, and one study onmeningococcal susceptibility. From a systematic search of the literature, we extracted SNPs associated

with susceptibility to other infectious diseases but not reported in theGWAS catalog.We found three studies on invasive aspergillosis

and two studies on pneumococcal disease (see the list published in Li et al. (2016).

GWAS SNP extraction and enrichment analysis
GWAS SNPs from the GWAS catalog and their proxies (r2 R 0.8 from a 500 kb window) were first extracted, which provided a list of

SNPs associated to 122 different human traits and diseases. We selected diseases/traits for which at least 10 independent SNPs

were reported to be associated.We then binned theseGWASSNPs into eight categories based on their association to closely related

human phenotypes (cancer, immune-mediated diseases, infectious disease, heart-related traits, blood-related traits, metabolic

traits, height, and Type 2 diabetes-related traits). Duplicated SNPs were removed from further analysis. We then intersected the

SNPs of each category with cQTLs that showed p < 0.05 in our study. The Fisher exact test was applied to test the over-represen-

tation of cQTL SNPs in infectious disease SNPs using the height-associated SNPs as reference.
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Enrichment for positive selection
The cytokine QTLs at different thresholds (13 10�7, 13 10�6, 13 10�5, 13 10�4) were intersected with loci under positive selection

(Mathieson et al., 2015). The distribution of positive selection p values on cQTL SNPs were compared with a randomly selected set of

non-significant cQTL SNPs (p > 0.01) by using Kolmogorov–Smirnov test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analyses were performed in R. Unsupervised hierarchical clustering was performed using Spearman’s correlation as the

measure of similarity. The Levene’s test to check the equality of variance of cytokine levels before and after stimulation. R-package

Matrix-eQTL, was used for cytokine QTL mapping, where linear model was applied with age, gender, and cell-count information

included as covariables. The Fisher exact test was applied to test the over-representation of cQTL SNPs in infectious disease

SNPs using the height-associated SNPs as reference.

DATA AND SOFTWARE AVAILABILITY

Online database
All data used in this project have been meticulously cataloged and archived in the BBMRI-NL data infrastructure (https://hfgp.

bbmri.nl/) using the MOLGENIS open source platform for scientific data (Swertz et al., 2010). This allows flexible data querying

and download, including sufficiently rich metadata and interfaces for machine processing (R statistics, REST API) and using

FAIR principles to optimize Findability, Accessibility, Interoperability and Reusability (Wilkinson et al., 2016).
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Supplemental Figures

Figure S1. Increased Levels of Cytokines upon Stimulation, Related to Figure 1

The box plots of 6 different cytokines in 500 individuals upon stimulation. The y-axis depicts the log2 transformed cytokine levels. The x-axis shows different

stimulations used to induce cytokine production in different tissues. The color legend indicates the different tissue systems used for stimulation.



Figure S2. Increased Inter-individual Variation upon Stimulation, Related to Figure 1
Box plots of cytokine levels (x axis) induced upon stimulation (y axis) in 500 individuals sorted based on the median values. The color legend shows the different

tissues used for stimulation.



(legend on next page)



Figure S3. Genome-wide Significant Cytokine QTLs, Related to Figure 4

(A) Correlation between PBMC-derived cytokines and cell counts.

(B) Summary of all genome-wide significant cytokine QTLs.

(C) Prioritized causal genes by differential expression analysis for genome-wide significant cytokine QTLs.



Figure S4. TLR1-6-10 Locus Genotype Stratified Gene Regulation upon Candida Stimulation, Related to Figure 5



Figure S5. Cytokine QTLs for TNF and IL22 Production, Related to Figure 5

(A) Validation of Cryptococcus induced cytokine TNF production.

(B) Regional plot of the association of SLC36A4 locus with S. aureus induced IL-22 levels in PBMCs.

(C) Boxplot of S. aureus induced IL-22 levels in PBMCs at SLC36A4 locus.

(D) Validation of S. aureus induced cytokine IL22 production



Figure S6. Proportion of Explained Variance of Cytokine Levels by Genetics, Across All the Measurements, Related to Figure 3

A summary of all the estimates of cytokine variance explained by genome-wide SNP data after age, gender, and cell-count correction is shown. The estimates

<25% are shown in gray, and the estimates >50% are shown in black.



Figure S7. Multidimensional Scale Analysis of Genotype Data from 500FG Cohort, Related to Figures 3 and S6 and STAR Methods

Genome-wide SNP data was used to perform multidimensional scaling analysis across different populations, including 500FG cohort (cohorts are indicated in

different colors). The x axis and y axis indicate the first two principal components differentiating different population cohorts. We analyzed 500FG cohort to map

cytokine production QTLs in this study.


