18 research outputs found

    Refined mapping of autoimmune disease associated genetic variants with gene expression suggests an important role for non-coding RNAs

    Get PDF
    Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases. (C) 2016 The Authors. Published by Elsevier Ltd.</p

    A systematic review of analytical methods used in genetic association analysis of the X-chromosome

    Get PDF
    Genetic association studies have been very successful at elucidating the genetic background of many complex diseases/traits. However, the X-chromosome is often neglected in these studies because of technical difficulties and the fact that most tools only utilize genetic data from autosomes. In this review, we aim to provide an overview of different practical approaches that are followed to incorporate the X-chromosome in association analysis, such as Genome-Wide Association Studies and Expression Quantitative Trait Loci Analysis. In general, the choice of which test statistics is most appropriate will depend on three main criteria: (1) the underlying X-inactivation model, (2) if Hardy-Weinberg equilibrium holds and sex-specific allele frequencies are expected and (3) whether adjustment for confounding variables is required. All in all, it is recommended that a combination of different association tests should be used for the analysis of X-chromosome

    Immunochip meta-analysis in European and Argentinian populations identifies two novel genetic loci associated with celiac disease

    No full text
    Contains fulltext : 217355.pdf (Publisher’s version ) (Closed access

    Immunochip analysis identifies novel susceptibility loci in the human leukocyte antigen region for acquired thrombotic thrombocytopenic purpura

    No full text
    Background: Acquired thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening thrombotic microangiopathy associated with the development of autoantibodies against the von Willebrand factor-cleaving protease ADAMTS-13. Similarly to what has been found for other autoimmune disorders, there is evidence of a genetic contribution, including the association of the human leukocyte antigen (HLA) class II complex with disease risk. Objective: To identify novel genetic risk factors in acquired TTP. Patients/Methods: We undertook a case-control genetic association study in 190 European-origin TTP patients and 1255 Italian healthy controls by using the Illumina Immunochip. Replication analysis in 88 Italian cases and 456 controls was performed with single-nucleotide polymorphism (SNP) TaqMan assays. Results and conclusion: We identified one common variant (rs6903608) located within the HLA class II locus that was independently associated with acquired TTP at genome-wide significance and conferred a 2.6-fold increased risk of developing a TTP episode (95% confidence interval [CI] 2.02-3.27, P = 1.64 9 10(-14)). We also found five non-HLA variants mapping to chromosomes 2, 6, 8 and X that were suggestively associated with the disease: rs9490550, rs115265285, rs5927472, rs7823314, and rs1334768 (nominal P-values ranging from 1.59 x 10(-5) to 7.60 x 10(-5)). Replication analysis confirmed the association of HLA variant rs6903608 with acquired TTP (pooled P = 3.95 x 10(-19)). Imputation of classic HLA genes followed by stepwise conditional analysis revealed that the combination of rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in acquired TTP. Our results refined the association of the HLA class II locus with acquired TTP, confirming its importance in the etiology of this autoimmune disease

    The impact of ADRB2 polymorphisms on immune responses and norepinephrine-induced immunosuppression

    Get PDF
    Rationale: To evaluate whether common nonsynonymous variants [single-nucleotide polymorphisms (SNPs) or SNP haplotypes] in the β2-adrenergic receptor render subjects more susceptible to norepinephrine-induced immunosuppression and whether they are associated with dysregulated ex vivo and in vivo inflammatory responses. Methods: Peripheral blood mononuclear cells from healthy volunteers (main cohort: n = 106, secondary cohort: n = 408) were ex vivo stimulated with various stimuli and production of cytokines was assessed. Additionally, ex vivo modulation of cytokine production by norepinephrine was evaluated in the main cohort. Volunteers from the main cohort also underwent experimental endotoxemia (administration of 1 ng/kg lipopolysaccharide), during which in vivo plasma cytokine concentrations and clinical inflammatory parameters were measured. Subjects were genotyped, common SNPs in the ADRB2 gene were extracted (rs1042711, rs1042713, and rs1042714), and the presence of haplotypes was identified (CysGlyGln, CysArgGln, and ArgGlyGlu). Results: In both cohorts, presence of ADRB2 SNPs or haplotypes was not associated with altered ex vivo cytokine responses. Norepinephrine attenuated production of the proinflammatory cytokines TNF and IL-6 [-26% (-22% to -30%) and -14% (-9% to -18%), respectively, both P 0.37). In addition, no influence of SNPs or haplotypes on in vivo cytokine concentrations or clinical inflammatory parameters was observed (P values >0.14). Conclusions: Common nonsynonymous variants in the ADRB2 gene influence neither ex vivo cytokine production or norepinephrine-mediated immunosuppression nor the systemic in vivo inflammatory response induced by lipopolysaccharide administration in healthy volunteers

    A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans

    Get PDF
    Contains fulltext : 165674.pdf (publisher's version ) (Closed access)As part of the Human Functional Genomics Project, which aims to understand the factors that determine the variability of immune responses, we investigated genetic variants affecting cytokine production in response to ex vivo stimulation in two independent cohorts of 500 and 200 healthy individuals. We demonstrate a strong impact of genetic heritability on cytokine production capacity after challenge with bacterial, fungal, viral, and non-microbial stimuli. In addition to 17 novel genome-wide significant cytokine QTLs (cQTLs), our study provides a comprehensive picture of the genetic variants that influence six different cytokines in whole blood, blood mononuclear cells, and macrophages. Important biological pathways that contain cytokine QTLs map to pattern recognition receptors (TLR1-6-10 cluster), cytokine and complement inhibitors, and the kallikrein system. The cytokine QTLs show enrichment for monocyte-specific enhancers, are more often located in regions under positive selection, and are significantly enriched among SNPs associated with infections and immune-mediated diseases. PAPERCLIP

    Immunochip analysis identifies novel susceptibility loci in the human leukocyte antigen region for acquired thrombotic thrombocytopenic purpura

    No full text
    Essentials Genetic predisposition to acquired thrombotic thrombocytopenic purpura (aTTP) is mainly unknown. Genetic risk factors for aTTP were studied by Immunochip analysis and replication study. Human leukocyte antigen (HLA) variant rs6903608 conferred a 2.5-fold higher risk of developing aTTP. rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in aTTP. Click to hear Dr Cataland's presentation on acquired thrombotic thrombocytopenic purpura. Summary: Background Acquired thrombotic thrombocytopenic purpura (TTP) is a rare, life-threatening thrombotic microangiopathy associated with the development of autoantibodies against the von Willebrand factor-cleaving protease ADAMTS-13. Similarly to what has been found for other autoimmune disorders, there is evidence of a genetic contribution, including the association of the human leukocyte antigen (HLA) class II complex with disease risk. Objective To identify novel genetic risk factors in acquired TTP. Patients/Methods We undertook a case\u2013control genetic association study in 190 European-origin TTP patients and 1255 Italian healthy controls by using the Illumina Immunochip. Replication analysis in 88 Italian cases and 456 controls was performed with single-nucleotide polymorphism (SNP) TaqMan assays. Results and conclusion We identified one common variant (rs6903608) located within the HLA class II locus that was independently associated with acquired TTP at genome-wide significance and conferred a 2.6-fold increased risk of developing a TTP episode (95% confidence interval [CI] 2.02\u20133.27, P = 1.64 7 10 1214). We also found five non-HLA variants mapping to chromosomes 2, 6, 8 and X that were suggestively associated with the disease: rs9490550, rs115265285, rs5927472, rs7823314, and rs1334768 (nominal P-values ranging from 1.59 7 10 125 to 7.60 7 10-5). Replication analysis confirmed the association of HLA variant rs6903608 with acquired TTP (pooled P = 3.95 7 10-19). Imputation of classic HLA genes followed by stepwise conditional analysis revealed that the combination of rs6903608 and HLA-DQB1*05:03 may explain most of the HLA association signal in acquired TTP. Our results refined the association of the HLA class II locus with acquired TTP, confirming its importance in the etiology of this autoimmune disease
    corecore