35 research outputs found

    The Candida albicans Ku70 Modulates Telomere Length and Structure by Regulating Both Telomerase and Recombination

    Get PDF
    The heterodimeric Ku complex has been shown to participate in DNA repair and telomere regulation in a variety of organisms. Here we report a detailed characterization of the function of Ku70 in the diploid fungal pathogen Candida albicans. Both ku70 heterozygous and homozygous deletion mutants have a wild-type colony and cellular morphology, and are not sensitive to MMS or UV light. Interestingly, we observed complex effects of KU70 gene dosage on telomere lengths, with the KU70/ku70 heterozygotes exhibiting slightly shorter telomeres, and the ku70 null strain exhibiting long and heterogeneous telomeres. Analysis of combination mutants suggests that the telomere elongation in the ku70 null mutant is due mostly to unregulated telomerase action. In addition, elevated levels of extrachromosomal telomeric circles were detected in the null mutant, consistent with activation of aberrant telomeric recombination. Altogether, our observations point to multiple mechanisms of the Ku complex in telomerase regulation and telomere protection in C. albicans, and reveal interesting similarities and differences in the mechanisms of the Ku complex in disparate systems

    Deletion of the Pichia pastoris KU70 Homologue Facilitates Platform Strain Generation for Gene Expression and Synthetic Biology

    Get PDF
    Targeted gene replacement to generate knock-outs and knock-ins is a commonly used method to study the function of unknown genes. In the methylotrophic yeast Pichia pastoris, the importance of specific gene targeting has increased since the genome sequencing projects of the most commonly used strains have been accomplished, but rapid progress in the field has been impeded by inefficient mechanisms for accurate integration. To improve gene targeting efficiency in P. pastoris, we identified and deleted the P. pastoris KU70 homologue. We observed a substantial increase in the targeting efficiency using the two commonly known and used integration loci HIS4 and ADE1, reaching over 90% targeting efficiencies with only 250-bp flanking homologous DNA. Although the ku70 deletion strain was noted to be more sensitive to UV rays than the corresponding wild-type strain, no lethality, severe growth retardation or loss of gene copy numbers could be detected during repetitive rounds of cultivation and induction of heterologous protein production. Furthermore, we demonstrated the use of the ku70 deletion strain for fast and simple screening of genes in the search of new auxotrophic markers by targeting dihydroxyacetone synthase and glycerol kinase genes. Precise knock-out strains for the well-known P. pastoris AOX1, ARG4 and HIS4 genes and a whole series of expression vectors were generated based on the wild-type platform strain, providing a broad spectrum of precise tools for both intracellular and secreted production of heterologous proteins utilizing various selection markers and integration strategies for targeted or random integration of single and multiple genes. The simplicity of targeted integration in the ku70 deletion strain will further support protein production strain generation and synthetic biology using P. pastoris strains as platform hosts

    Accurate Protein Structure Annotation through Competitive Diffusion of Enzymatic Functions over a Network of Local Evolutionary Similarities

    Get PDF
    High-throughput Structural Genomics yields many new protein structures without known molecular function. This study aims to uncover these missing annotations by globally comparing select functional residues across the structural proteome. First, Evolutionary Trace Annotation, or ETA, identifies which proteins have local evolutionary and structural features in common; next, these proteins are linked together into a proteomic network of ETA similarities; then, starting from proteins with known functions, competing functional labels diffuse link-by-link over the entire network. Every node is thus assigned a likelihood z-score for every function, and the most significant one at each node wins and defines its annotation. In high-throughput controls, this competitive diffusion process recovered enzyme activity annotations with 99% and 97% accuracy at half-coverage for the third and fourth Enzyme Commission (EC) levels, respectively. This corresponds to false positive rates 4-fold lower than nearest-neighbor and 5-fold lower than sequence-based annotations. In practice, experimental validation of the predicted carboxylesterase activity in a protein from Staphylococcus aureus illustrated the effectiveness of this approach in the context of an increasingly drug-resistant microbe. This study further links molecular function to a small number of evolutionarily important residues recognizable by Evolutionary Tracing and it points to the specificity and sensitivity of functional annotation by competitive global network diffusion. A web server is at http://mammoth.bcm.tmc.edu/networks

    Separation of Recombination and SOS Response in Escherichia coli RecA Suggests LexA Interaction Sites

    Get PDF
    RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root

    Micromechanical Properties of Injection-Molded Starch–Wood Particle Composites

    Get PDF
    The micromechanical properties of injection molded starch–wood particle composites were investigated as a function of particle content and humidity conditions. The composite materials were characterized by scanning electron microscopy and X-ray diffraction methods. The microhardness of the composites was shown to increase notably with the concentration of the wood particles. In addition,creep behavior under the indenter and temperature dependence were evaluated in terms of the independent contribution of the starch matrix and the wood microparticles to the hardness value. The influence of drying time on the density and weight uptake of the injection-molded composites was highlighted. The results revealed the role of the mechanism of water evaporation, showing that the dependence of water uptake and temperature was greater for the starch–wood composites than for the pure starch sample. Experiments performed during the drying process at 70°C indicated that the wood in the starch composites did not prevent water loss from the samples.Peer reviewe

    Control de trips en fresĂłn: empleo de plantas de haba como refugio de poblaciones de antocĂłridos

    No full text

    TRF2 Interaction with Ku Heterotetramerization Interface Gives Insight into c-NHEJ Prevention at Human Telomeres

    Get PDF
    Telomeres are protected from nonhomologous end-joining (NHEJ) to avoid deleterious chromosome fusions, yet they associate with the Ku heterodimer that is principal in the classical NHEJ (c-NHEJ) pathway. T-loops have been proposed to inhibit Ku’s association with telomeric ends, thus inhibiting c-NHEJ; however, deficiencies in the t-loop model suggest additional mechanisms are in effect. We demonstrate that TRF2 interacts with Ku at telomeres and via residues in Ku70 helix 5 (α5), which are vital for NHEJ. We show that Ku’s interaction with a TRF2 mutant that induces telomeric fusions is significantly impaired. Additionally, we demonstrate that Ku70 α5 is required for Ku self-association in live cells, which can bridge DNA ends. Together, these findings lead us to propose a model in which telomeres are directly protected from c-NHEJ via TRF2 impeding Ku’s ability to synapse telomere ends

    Ku must load directly onto the chromosome end in order to mediate its telomeric functions.

    Get PDF
    The Ku heterodimer associates with the Saccharomyces cerevisiae telomere, where it impacts several aspects of telomere structure and function. Although Ku avidly binds DNA ends via a preformed channel, its ability to associate with telomeres via this mechanism could be challenged by factors known to bind directly to the chromosome terminus. This has led to uncertainty as to whether Ku itself binds directly to telomeric ends and whether end association is crucial for Ku's telomeric functions. To address these questions, we constructed DNA end binding-defective Ku heterodimers by altering amino acid residues in Ku70 and Ku80 that were predicted to contact DNA. These mutants continued to associate with their known telomere-related partners, such as Sir4, a factor required for telomeric silencing, and TLC1, the RNA component of telomerase. Despite these interactions, we found that the Ku mutants had markedly reduced association with telomeric chromatin and null-like deficiencies for telomere end protection, length regulation, and silencing functions. In contrast to Ku null strains, the DNA end binding defective Ku mutants resulted in increased, rather than markedly decreased, imprecise end-joining proficiency at an induced double-strand break. This result further supports that it was the specific loss of Ku's telomere end binding that resulted in telomeric defects rather than global loss of Ku's functions. The extensive telomere defects observed in these mutants lead us to propose that Ku is an integral component of the terminal telomeric cap, where it promotes a specific architecture that is central to telomere function and maintenance
    corecore