3,699 research outputs found

    The Distance to the Large Magellanic Cloud from the Eclipsing Binary HV2274

    Get PDF
    The distance to the Large Magellanic Cloud (LMC) is crucial for the calibration of the Cosmic Distance Scale. We derive a distance to the LMC based on an analysis of ground-based photometry and HST-based spectroscopy and spectrophotometry of the LMC eclipsing binary system HV2274. Analysis of the optical light curve and HST/GHRS radial velocity curve provides the masses and radii of the binary components. Analysis of the HST/FOS UV/optical spectrophotometry provides the temperatures of the component stars and the interstellar extinction of the system. When combined, these data yield a distance to the binary system. After correcting for the location of HV2274 with respect to the center of the LMC, we find d(LMC) = 45.7 +/- 1.6 kpc or DM(LMC) = 18.30 +/- 0.07 mag. This result, which is immune to the metallicity-induced zero point uncertainties that have plagued other techniques, lends strong support to the ``short'' LMC distance scale as derived from a number of independent methods.Comment: 6 pages, including 2 pages of figures. Newly available optical (B and V) photometry has revealed -- and allowed the elimination of -- a systematic error in the previously reported determination of E(B-V) for HV2274. The new result is E(B-V) = 0.12 mag (as compared to the value of 0.083 reported in the original submission) and produces a DECREASE in the distance modulus of HV2274 by 0.12 mag. ApJ Letters, in pres

    A census of ρ\rho Oph candidate members from Gaia DR2

    Full text link
    The Ophiuchus cloud complex is one of the best laboratories to study the earlier stages of the stellar and protoplanetary disc evolution. The wealth of accurate astrometric measurements contained in the Gaia Data Release 2 can be used to update the census of Ophiuchus member candidates. We seek to find potential new members of Ophiuchus and identify those surrounded by a circumstellar disc. We constructed a control sample composed of 188 bona fide Ophiuchus members. Using this sample as a reference we applied three different density-based machine learning clustering algorithms (DBSCAN, OPTICS, and HDBSCAN) to a sample drawn from the Gaia catalogue centred on the Ophiuchus cloud. The clustering analysis was applied in the five astrometric dimensions defined by the three-dimensional Cartesian space and the proper motions in right ascension and declination. The three clustering algorithms systematically identify a similar set of candidate members in a main cluster with astrometric properties consistent with those of the control sample. The increased flexibility of the OPTICS and HDBSCAN algorithms enable these methods to identify a secondary cluster. We constructed a common sample containing 391 member candidates including 166 new objects, which have not yet been discussed in the literature. By combining the Gaia data with 2MASS and WISE photometry, we built the spectral energy distributions from 0.5 to 22\microm for a subset of 48 objects and found a total of 41 discs, including 11 Class II and 1 Class III new discs. Density-based clustering algorithms are a promising tool to identify candidate members of star forming regions in large astrometric databases. If confirmed, the candidate members discussed in this work would represent an increment of roughly 40% of the current census of Ophiuchus.Comment: A&A, Accepted. Abridged abstrac

    Identification of transitional disks in Chamaeleon with Herschel

    Get PDF
    Transitional disks are circumstellar disks with inner holes that in some cases are produced by planets and/or substellar companions in these systems. For this reason, these disks are extremely important for the study of planetary system formation. The Herschel Space Observatory provides an unique opportunity for studying the outer regions of protoplanetary disks. In this work we update previous knowledge on the transitional disks in the Chamaeleon I and II regions with data from the Herschel Gould Belt Survey. We propose a new method for transitional disk classification based on the WISE 12 micron-PACS 70 micron color, together with inspection of the Herschel images. We applied this method to the population of Class II sources in the Chamaeleon region and studied the spectral energy distributions of the transitional disks in the sample. We also built the median spectral energy distribution of Class II objects in these regions for comparison with transitional disks. The proposed method allows a clear separation of the known transitional disks from the Class II sources. We find 6 transitional disks, all previously known, and identify 5 objects previously thought to be transitional as possibly non-transitional. We find higher fluxes at the PACS wavelengths in the sample of transitional disks than those of Class II objects. We show the Herschel 70 micron band to be an efficient tool for transitional disk identification. The sensitivity and spatial resolution of Herschel reveals a significant contamination level among the previously identified transitional disk candidates for the two regions, which calls for a revision of previous samples of transitional disks in other regions. The systematic excess found at the PACS bands could be a result of the mechanism that produces the transitional phase, or an indication of different evolutionary paths for transitional disks and Class II sources.Comment: Accepted for publication in A&A: 11 March 2013 11 pages, 15 figure

    Binaries with total eclipses in the LMC: potential targets for spectroscopy

    Get PDF
    35 Eclipsing binaries presenting unambiguous total eclipses were selected from a subsample of the list of Wyrzykowski et al. (2003). The photometric elements are given for the I curve in DiA photometry, as well as approximate Teff and masses of the components. The interest of these systems is stressed in view of future spectroscopic observations.Comment: 4 pages, 1 figure; poster presented at the conference "Close binaries in the 21st Century: new opportunities and challenges", Syros, 27-30 June 200

    Manejo da adubação verde com crotalária no consórcio com o quiabeiro sob manejo orgânico.

    Get PDF
    bitstream/CNPAB-2010/28144/1/cot059.pd

    X-ray detection with Micromegas with background levels below 106^{-6} keV1^{-1}cm2^{-2}s1^{-1}

    Full text link
    Micromegas detectors are an optimum technological choice for the detection of low energy x-rays. The low background techniques applied to these detectors yielded remarkable background reductions over the years, being the CAST experiment beneficiary of these developments. In this document we report on the latest upgrades towards further background reductions and better understanding of the detectors' response. The upgrades encompass the readout electronics, a new detector design and the implementation of a more efficient cosmic muon veto system. Background levels below 106^{-6}keV1^{-1}cm2^{-2}s1^{-1} have been obtained at sea level for the first time, demonstrating the feasibility of the expectations posed by IAXO, the next generation axion helioscope. Some results obtained with a set of measurements conducted in the x-ray beam of the CAST Detector Laboratory will be also presented and discussed

    Stellar Activity in the Broad-Band Ultraviolet

    Get PDF
    The completion of the GALEX All-Sky Survey in the ultraviolet allows activity measurements to be acquired for many more stars than is possible with the limited sensitivity of ROSAT or the limited sky coverage of Chandra, XMM, or spectroscopic surveys for line emission in the optical or ultraviolet. We have explored the use of GALEX photometry as an activity indicator, using as a calibration sample stars within 50 pc, representing the field, and in selected nearby associations, representing the youngest stages of stellar evolution. We present preliminary relations between UV flux and the optical activity indicator R'_HK and between UV flux and age. We demonstrate that far-UV (FUV, 1350-1780{\AA}) excess flux is roughly proportional to R'_HK. We also detect a correlation between near-UV (NUV, 1780-2830{\AA}) flux and activity or age, but the effect is much more subtle, particularly for stars older than than ~0.5-1 Gyr. Both the FUV and NUV relations show large scatter, ~0.2 mag when predicting UV flux, ~0.18 dex when predicting R'_HK, and ~0.4 dex when predicting age. This scatter appears to be evenly split between observational errors in current state-of-the-art data and long-term activity variability in the sample stars.Comment: 37 pages, 12 figures. To appear in the Astronomical Journa
    corecore