3,699 research outputs found
The Distance to the Large Magellanic Cloud from the Eclipsing Binary HV2274
The distance to the Large Magellanic Cloud (LMC) is crucial for the
calibration of the Cosmic Distance Scale. We derive a distance to the LMC based
on an analysis of ground-based photometry and HST-based spectroscopy and
spectrophotometry of the LMC eclipsing binary system HV2274. Analysis of the
optical light curve and HST/GHRS radial velocity curve provides the masses and
radii of the binary components. Analysis of the HST/FOS UV/optical
spectrophotometry provides the temperatures of the component stars and the
interstellar extinction of the system. When combined, these data yield a
distance to the binary system. After correcting for the location of HV2274 with
respect to the center of the LMC, we find d(LMC) = 45.7 +/- 1.6 kpc or DM(LMC)
= 18.30 +/- 0.07 mag. This result, which is immune to the metallicity-induced
zero point uncertainties that have plagued other techniques, lends strong
support to the ``short'' LMC distance scale as derived from a number of
independent methods.Comment: 6 pages, including 2 pages of figures. Newly available optical (B and
V) photometry has revealed -- and allowed the elimination of -- a systematic
error in the previously reported determination of E(B-V) for HV2274. The new
result is E(B-V) = 0.12 mag (as compared to the value of 0.083 reported in
the original submission) and produces a DECREASE in the distance modulus of
HV2274 by 0.12 mag. ApJ Letters, in pres
A census of Oph candidate members from Gaia DR2
The Ophiuchus cloud complex is one of the best laboratories to study the
earlier stages of the stellar and protoplanetary disc evolution. The wealth of
accurate astrometric measurements contained in the Gaia Data Release 2 can be
used to update the census of Ophiuchus member candidates. We seek to find
potential new members of Ophiuchus and identify those surrounded by a
circumstellar disc. We constructed a control sample composed of 188 bona fide
Ophiuchus members. Using this sample as a reference we applied three different
density-based machine learning clustering algorithms (DBSCAN, OPTICS, and
HDBSCAN) to a sample drawn from the Gaia catalogue centred on the Ophiuchus
cloud. The clustering analysis was applied in the five astrometric dimensions
defined by the three-dimensional Cartesian space and the proper motions in
right ascension and declination. The three clustering algorithms systematically
identify a similar set of candidate members in a main cluster with astrometric
properties consistent with those of the control sample. The increased
flexibility of the OPTICS and HDBSCAN algorithms enable these methods to
identify a secondary cluster. We constructed a common sample containing 391
member candidates including 166 new objects, which have not yet been discussed
in the literature. By combining the Gaia data with 2MASS and WISE photometry,
we built the spectral energy distributions from 0.5 to 22\microm for a subset
of 48 objects and found a total of 41 discs, including 11 Class II and 1 Class
III new discs. Density-based clustering algorithms are a promising tool to
identify candidate members of star forming regions in large astrometric
databases. If confirmed, the candidate members discussed in this work would
represent an increment of roughly 40% of the current census of Ophiuchus.Comment: A&A, Accepted. Abridged abstrac
Identification of transitional disks in Chamaeleon with Herschel
Transitional disks are circumstellar disks with inner holes that in some
cases are produced by planets and/or substellar companions in these systems.
For this reason, these disks are extremely important for the study of planetary
system formation. The Herschel Space Observatory provides an unique opportunity
for studying the outer regions of protoplanetary disks. In this work we update
previous knowledge on the transitional disks in the Chamaeleon I and II regions
with data from the Herschel Gould Belt Survey. We propose a new method for
transitional disk classification based on the WISE 12 micron-PACS 70 micron
color, together with inspection of the Herschel images. We applied this method
to the population of Class II sources in the Chamaeleon region and studied the
spectral energy distributions of the transitional disks in the sample. We also
built the median spectral energy distribution of Class II objects in these
regions for comparison with transitional disks. The proposed method allows a
clear separation of the known transitional disks from the Class II sources. We
find 6 transitional disks, all previously known, and identify 5 objects
previously thought to be transitional as possibly non-transitional. We find
higher fluxes at the PACS wavelengths in the sample of transitional disks than
those of Class II objects. We show the Herschel 70 micron band to be an
efficient tool for transitional disk identification. The sensitivity and
spatial resolution of Herschel reveals a significant contamination level among
the previously identified transitional disk candidates for the two regions,
which calls for a revision of previous samples of transitional disks in other
regions. The systematic excess found at the PACS bands could be a result of the
mechanism that produces the transitional phase, or an indication of different
evolutionary paths for transitional disks and Class II sources.Comment: Accepted for publication in A&A: 11 March 2013 11 pages, 15 figure
Binaries with total eclipses in the LMC: potential targets for spectroscopy
35 Eclipsing binaries presenting unambiguous total eclipses were selected
from a subsample of the list of Wyrzykowski et al. (2003). The photometric
elements are given for the I curve in DiA photometry, as well as approximate
Teff and masses of the components. The interest of these systems is stressed in
view of future spectroscopic observations.Comment: 4 pages, 1 figure; poster presented at the conference "Close binaries
in the 21st Century: new opportunities and challenges", Syros, 27-30 June
200
Manejo da adubação verde com crotalária no consórcio com o quiabeiro sob manejo orgânico.
bitstream/CNPAB-2010/28144/1/cot059.pd
X-ray detection with Micromegas with background levels below 10 keVcms
Micromegas detectors are an optimum technological choice for the detection of
low energy x-rays. The low background techniques applied to these detectors
yielded remarkable background reductions over the years, being the CAST
experiment beneficiary of these developments. In this document we report on the
latest upgrades towards further background reductions and better understanding
of the detectors' response. The upgrades encompass the readout electronics, a
new detector design and the implementation of a more efficient cosmic muon veto
system. Background levels below 10keVcms have been
obtained at sea level for the first time, demonstrating the feasibility of the
expectations posed by IAXO, the next generation axion helioscope. Some results
obtained with a set of measurements conducted in the x-ray beam of the CAST
Detector Laboratory will be also presented and discussed
Stellar Activity in the Broad-Band Ultraviolet
The completion of the GALEX All-Sky Survey in the ultraviolet allows activity
measurements to be acquired for many more stars than is possible with the
limited sensitivity of ROSAT or the limited sky coverage of Chandra, XMM, or
spectroscopic surveys for line emission in the optical or ultraviolet. We have
explored the use of GALEX photometry as an activity indicator, using as a
calibration sample stars within 50 pc, representing the field, and in selected
nearby associations, representing the youngest stages of stellar evolution. We
present preliminary relations between UV flux and the optical activity
indicator R'_HK and between UV flux and age. We demonstrate that far-UV (FUV,
1350-1780{\AA}) excess flux is roughly proportional to R'_HK. We also detect a
correlation between near-UV (NUV, 1780-2830{\AA}) flux and activity or age, but
the effect is much more subtle, particularly for stars older than than ~0.5-1
Gyr. Both the FUV and NUV relations show large scatter, ~0.2 mag when
predicting UV flux, ~0.18 dex when predicting R'_HK, and ~0.4 dex when
predicting age. This scatter appears to be evenly split between observational
errors in current state-of-the-art data and long-term activity variability in
the sample stars.Comment: 37 pages, 12 figures. To appear in the Astronomical Journa
- …
