90 research outputs found

    Recent genome resequencing paraded COBRA-Like gene family roles in abiotic stress and wood formation in Poplar

    Get PDF
    A cell wall determines the mechanical properties of a cell, serves as a barrier against plant stresses, and allows cell division and growth processes. The COBRA-Like (COBL) gene family encodes a putative glycosylphosphatidylinositol (GPI)-anchored protein that controls cellulose deposition and cell progression in plants by contributing to the microfibril orientation of a cell wall. Despite being studied in different plant species, there is a dearth of the comprehensive global analysis of COBL genes in poplar. Poplar is employed as a model woody plant to study abiotic stresses and biomass production in tree research. Improved genome resequencing has enabled the comprehensive exploration of the evolution and functional capacities of PtrCOBLs (Poplar COBRA-Like genes) in poplar. Phylogeny analysis has discerned and classified PtrCOBLs into two groups resembling the Arabidopsis COBL family, and group I genes possess longer proteins but have fewer exons than group II. Analysis of gene structure and motifs revealed PtrCOBLs maintained a rather stable motif and exon–intron pattern across members of the same group. Synteny and collinearity analyses exhibited that the evolution of the COBL gene family was heavily influenced by gene duplication events. PtrCOBL genes have undergone both segmental duplication and tandem duplication, followed by purifying selection. Promotor analysis flaunted various phytohormone-, growth- and stress-related cis-elements (e.g., MYB, ABA, MeJA, SA, AuxR, and ATBP1). Likewise, 29 Ptr-miRNAs of 20 families were found targeting 11 PtrCOBL genes. PtrCOBLs were found localized at the plasma membrane and extracellular matrix, while gene ontology analysis showed their involvement in plant development, plant growth, stress response, cellulose biosynthesis, and cell wall biogenesis. RNA-seq datasets depicted the bulk of PtrCOBL genes expression being found in plant stem tissues and leaves, rendering mechanical strength and rejoinders to environmental cues. PtrCOBL2, 3, 10, and 11 manifested the highest expression in vasculature and abiotic stress, and resemblant expression trends were upheld by qRT-PCR. Co-expression network analysis identified PtrCOBL2 and PtrCOBL3 as hub genes across all abiotic stresses and wood developing tissues. The current study reports regulating roles of PtrCOBLs in xylem differentiating tissues, tension wood formation, and abiotic stress latency that lay the groundwork for future functional studies of the PtrCOBL genes in poplar breeding

    Genome-wide identification and characterization of bZIP transcription factors and their expression profile under abiotic stresses in Chinese pear (Pyrus bretschneideri)

    Get PDF
    Background: In plants, basic leucine zipper transcription factors (TFs) play important roles in multiple biological processes such as anthesis, fruit growth & development and stress responses. However, systematic investigation and characterization of bZIP-TFs remain unclear in Chinese white pear. Chinese white pear is a fruit crop that has important nutritional and medicinal values. Results: In this study, 62 bZIP genes were comprehensively identified from Chinese Pear, and 54 genes were distributed among 17 chromosomes. Frequent whole-genome duplication (WGD) and dispersed duplication (DSD) were the major driving forces underlying the bZIP gene family in Chinese white pear. bZIP-TFs are classified into 13 subfamilies according to the phylogenetic tree. Subsequently, purifying selection plays an important role in the evolution process of PbbZIPs. Synteny analysis of bZIP genes revealed that 196 orthologous gene pairs were identified between Pyrus bretschneideri, Fragaria vesca, Prunus mume, and Prunus persica. Moreover, cis-elements that respond to various stresses and hormones were found on the promoter regions of PbbZIP, which were induced by stimuli. Gene structure (intron/exon) and different compositions of motifs revealed that functional divergence among subfamilies. Expression pattern of PbbZIP genes differential expressed under hormonal treatment abscisic acid, salicylic acid, and methyl jasmonate in pear fruits by real-time qRT-PCR. Conclusions: Collectively, a systematic analysis of gene structure, motif composition, subcellular localization, synteny analysis, and calculation of synonymous (Ks) and non-synonymous (Ka) was performed in Chinese white pear. Sixty-two bZIP-TFs in Chinese pear were identified, and their expression profiles were comprehensively analyzed under ABA, SA, and MeJa hormones, which respond to multiple abiotic stresses and fruit growth and development. PbbZIP gene occurred through Whole-genome duplication and dispersed duplication events. These results provide a basic framework for further elucidating the biological function characterizations under multiple developmental stages and abiotic stress responses.This work was performed at the school of Life Sciences, Anhui agricultural university, Hefei, China and was supported by National Natural Science Foundation of China (No. 31640068) and Natural Science Youth Foundation of Anhui Agricultural University (No. 2019zd01). These funding bodies had no role in the design of the study, collection, analysis, and interpretation of data or in writing the manuscript

    Genome-Wide Identification and Expression Analysis of SnRK2 Gene Family in Dormant Vegetative Buds of Liriodendron chinense in Response to Abscisic Acid, Chilling, and Photoperiod

    Get PDF
    Protein kinases play an essential role in plants’ responses to environmental stress signals. SnRK2 (sucrose non-fermenting 1-related protein kinase 2) is a plant-specific protein kinase that plays a crucial role in abscisic acid and abiotic stress responses in some model plant species. In apple, corn, rice, pepper, grapevine, Arabidopsis thaliana, potato, and tomato, a genome-wide study of the SnRK2 protein family was performed earlier. The genome-wide comprehensive investigation was first revealed to categorize the SnRK2 genes in the Liriodendron chinense (L. chinense). The five SnRK2 genes found in the L. chinense genome were highlighted in this study. The structural gene variants, 3D structure, chromosomal distributions, motif analysis, phylogeny, subcellular localization, cis-regulatory elements, expression profiles in dormant buds, and photoperiod and chilling responses were all investigated in this research. The five SnRK2 genes from L. chinense were grouped into groups (I–IV) based on phylogeny analysis, with three being closely related to other species. Five hormones-, six stress-, two growths and biological process-, and two metabolic-related responsive elements were discovered by studying the cis-elements in the promoters. According to the expression analyses, all five genes were up- and down-regulated in response to abscisic acid (ABA), photoperiod, chilling, and chilling, as well as photoperiod treatments. Our findings gave insight into the SnRK2 family genes in L. chinense and opened up new study options

    Global genetic diversity and evolutionary patterns among Potato leafroll virus populations

    Get PDF
    Potato leafroll virus (PLRV) is a widespread and one of the most damaging viral pathogens causing significant quantitative and qualitative losses in potato worldwide. The current knowledge of the geographical distribution, standing genetic diversity and the evolutionary patterns existing among global PLRV populations is limited. Here, we employed several bioinformatics tools and comprehensively analyzed the diversity, genomic variability, and the dynamics of key evolutionary factors governing the global spread of this viral pathogen. To date, a total of 84 full-genomic sequences of PLRV isolates have been reported from 22 countries with most genomes documented from Kenya. Among all PLRV-encoded major proteins, RTD and P0 displayed the highest level of nucleotide variability. The highest percentage of mutations were associated with RTD (38.81%) and P1 (31.66%) in the coding sequences. We detected a total of 10 significantly supported recombination events while the most frequently detected ones were associated with PLRV genome sequences reported from Kenya. Notably, the distribution patterns of recombination breakpoints across different genomic regions of PLRV isolates remained variable. Further analysis revealed that with exception of a few positively selected codons, a major part of the PLRV genome is evolving under strong purifying selection. Protein disorder prediction analysis revealed that CP-RTD had the highest percentage (48%) of disordered amino acids and the majority (27%) of disordered residues were positioned at the C-terminus. These findings will extend our current knowledge of the PLRV geographical prevalence, genetic diversity, and evolutionary factors that are presumably shaping the global spread and successful adaptation of PLRV as a destructive potato pathogen to geographically isolated regions of the world

    Probiotics: mechanism of action, health benefits and their application in food industries

    Get PDF
    Probiotics, like lactic acid bacteria, are non-pathogenic microbes that exert health benefits to the host when administered in adequate quantity. Currently, research is being conducted on the molecular events and applications of probiotics. The suggested mechanisms by which probiotics exert their action include; competitive exclusion of pathogens for adhesion sites, improvement of the intestinal mucosal barrier, gut immunomodulation, and neurotransmitter synthesis. This review emphasizes the recent advances in the health benefits of probiotics and the emerging applications of probiotics in the food industry. Due to their capability to modulate gut microbiota and attenuate the immune system, probiotics could be used as an adjuvant in hypertension, hypercholesterolemia, cancer, and gastrointestinal diseases. Considering the functional properties, probiotics are being used in the dairy, beverage, and baking industries. After developing the latest techniques by researchers, probiotics can now survive within harsh processing conditions and withstand GI stresses quite effectively. Thus, the potential of probiotics can efficiently be utilized on a commercial scale in food processing industries

    ANTIMICROBIAL POTENTIAL OF ALKALOIDS AND FLAVONOIDS EXTRACTED FROM TAMARIX APHYLLA LEAVES AGAINST COMMON HUMAN PATHOGENIC BACTERIA

    Get PDF
    Background: Alkaloids and flavonoids are secondary metabolites extracted from different medicinal plants. Tamarix aphylla a traditionally valuable medicinal plant; was used for the extraction of alkaloids and flavonoids in order to evaluate their antibacterial activity. Methodology: The leaves of the plant were collected from district Kohat, Pakistan, and their alkaloids and flavonoids were extracted with ethanol and methanol, respectively. Four bacteria i.e. Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa) were selected for the biological screening of these phyto-constituents. Results: The concentration of alkaloids was found to be more in the leaves of Tamarix aphylla than flavonoids. The extracted phytochemicals showed varied inhibition zones against tested bacterial isolates. Alkaloids showed highest inhibitory activity against Staphylococcus aureus (14±0.6 mm) followed by Pseudomonas aeruginosa (13±0.7 mm). Conversely, flavonoids showed the highest inhibitory affect against Salmonella typhi (17±0.7 mm) followed by Staphylococcus aureus (14±0.7 mm). However, both extracts showed the lowest inhibitory effects against Escherichia coli. Conclusions: It was concluded that the alkaloids and flavonoids from Tamarix aphylla leaves have antimicrobial potential against common human bacterial pathogens. However, flavonoids were found to be more active phytochemical against tested bacterial strains as compared to alkaloids

    Probiotics: mechanism of action, health benefits and their application in food industries

    Get PDF
    Probiotics, like lactic acid bacteria, are non-pathogenic microbes that exert health benefits to the host when administered in adequate quantity. Currently, research is being conducted on the molecular events and applications of probiotics. The suggested mechanisms by which probiotics exert their action include; competitive exclusion of pathogens for adhesion sites, improvement of the intestinal mucosal barrier, gut immunomodulation, and neurotransmitter synthesis. This review emphasizes the recent advances in the health benefits of probiotics and the emerging applications of probiotics in the food industry. Due to their capability to modulate gut microbiota and attenuate the immune system, probiotics could be used as an adjuvant in hypertension, hypercholesterolemia, cancer, and gastrointestinal diseases. Considering the functional properties, probiotics are being used in the dairy, beverage, and baking industries. After developing the latest techniques by researchers, probiotics can now survive within harsh processing conditions and withstand GI stresses quite effectively. Thus, the potential of probiotics can efficiently be utilized on a commercial scale in food processing industries
    corecore