11,287 research outputs found
Optically exciting a magnetic memory - A feasibility study
Rare earth iron garnets were used in experiments to determine the feasibility of optically pumping a magnetic material to effect the switching process. It was found that rare earth garnets are limited by an absorption edge, only terbium and dysprosium offer a possibility of pumping at energies below the conduction band edge
Applications of the magneto-optical filter to stellar pulsation measurements
A proposed method of employing the Cacciani magneto-optical filter (MOF) for stellar seismology studies is described. The method relies on the fact that the separation of the filter bandpasses in the MOF can be changed by varying the level of input power to the filter cells. With the use of a simple servosystem the bandpass of a MOF can be tuned to compensate for the changes in the radial velocity of a star introduced by the orbital motion of the Earth. Such a tuned filter can then be used to record intensity fluctuations through the MOF bandpass over an extended period of time for each given star. Also, the use of a two cell version of the MOF makes it possible to alternately chop between the bandpass located in the stellar line wing and a second bandpass located in the stellar continuum. Rapid interchange between the two channels makes it possible for atmospheric-introduced noise to be removed from the time series
A Study of Flow Separation in Transonic Flow Using Inviscid and Viscous Computational Fluid Dynamics (CFD) Schemes
A comparison of flow separation in transonic flows is made using various computational schemes which solve the Euler and the Navier-Stokes equations of fluid mechanics. The flows examined are computed using several simple two-dimensional configurations including a backward facing step and a bump in a channel. Comparison of the results obtained using shock fitting and flux vector splitting methods are presented and the results obtained using the Euler codes are compared to results on the same configurations using a code which solves the Navier-Stokes equations
Solar Seismology from Space. a Conference at Snowmass, Colorado
The quality of the ground based observing environment suffers from several degrading factors: diurnal interruptions and thermal variations, atmospheric seeing and transparency fluctuations and adverse weather interruptions are among the chief difficulties. The limited fraction of the solar surface observable from only one vantage point is also a potential limitation to the quality of the data available without going to space. Primary conference goals were to discuss in depth the scientific return from current observations and analyses of solar oscillations, to discuss the instrumental and site requirements for realizing the full potential of the seismic analysis method, and to help bring new workers into the field by collecting and summarizing the key background theory. At the conclusion of the conference there was a clear consensus that ground based observation would not be able to provide data of the quality required to permit a substantial analysis of the solar convection zone dynamics or to permit a full deduction of the solar interior structure
Nonlinearity and pixel shifting effects in HXRG infrared detectors
We study the nonlinearity (NL) in the conversion from charge to voltage in
infrared detectors (HXRG) for use in precision astronomy. We present laboratory
measurements of the NL function of a H2RG detector and discuss the accuracy to
which it would need to be calibrated in future space missions to perform
cosmological measurements through the weak gravitational lensing technique. In
addition, we present an analysis of archival data from the infrared H1RG
detector of the Wide Field Camera 3 in the Hubble Space Telescope that provides
evidence consistent with the existence of a sensor effect analogous to the
brighter-fatter effect found in Charge-Coupled Devices. We propose a model in
which this effect could be understood as shifts in the effective pixel
boundaries, and discuss prospects of laboratory measurements to fully
characterize this effect.Comment: Accepted for publication in the Journal of Instrumentation (JINST).
Part of "Precision Astronomy with Fully Depleted CCDs" (Dec 1-2, 2016),
Brookhaven National Laboratory, Upton, NY, US
Histidine nutrition and genotype affect cataract development in Atlantic salmon, Salmo salar L.
The aim of this study was to investigate effects of dietary levels of histidine (His) and iron (Fe) on cataract development in two strains of Atlantic salmon monitored through parr-smolt transformation. Three experimental diets were fed: (i) a control diet (CD) with 110 mg kg-1 Fe and 11.7 g kg-1 His; (ii) CD supplemented with crystalline His to a level of 18 g kg-1 (HD); and (iii) HD with added iron up to 220 mg kg-1 (HID). A cross-over design, with two feeding periods was used. A 6-week freshwater (FW) period was followed by a 20-week period, of which the first three were in FW and the following 17 weeks in sea water (SW). Fish were sampled for weighing, cataract assessment and tissue analysis at five time points. Cataracts developed in all groups in SW, but scores were lower in those fed high His diets (P < 0.05). This effect was most pronounced when HD or HID was given in SW, but was also observed when these diets were given in FW only. Histidine supplementation had a positive effect on growth performance and feed conversion ratio (P < 0.05), whereas this did not occur when iron was added. Groups fed HD or HID had higher lens levels of His and N-acetyl histidine (NAH), the latter showing a marked increase post-smoltification (P < 0.05). The HD or HID groups also showed higher muscle concentrations of the His dipeptide anserine (P < 0.05). There was a strong genetic influence on cataract development in the CD groups (P < 0.001), not associated with tissue levels of His or NAH. The role of His and His-related compounds in cataractogenesis is discussed in relation to tissue buffering, osmoregulation and antioxidation
A method for the estimation of p-mode parameters from averaged solar oscillation power spectra
A new fitting methodology is presented which is equally well suited for the
estimation of low-, medium-, and high-degree mode parameters from -averaged
solar oscillation power spectra of widely differing spectral resolution. This
method, which we call the "Windowed, MuLTiple-Peak, averaged spectrum", or
WMLTP Method, constructs a theoretical profile by convolving the weighted sum
of the profiles of the modes appearing in the fitting box with the power
spectrum of the window function of the observing run using weights from a
leakage matrix that takes into account both observational and physical effects,
such as the distortion of modes by solar latitudinal differential rotation. We
demonstrate that the WMLTP Method makes substantial improvements in the
inferences of the properties of the solar oscillations in comparison with a
previous method that employed a single profile to represent each spectral peak.
We also present an inversion for the internal solar structure which is based
upon 6,366 modes that we have computed using the WMLTP method on the 66-day
long 2010 SOHO/MDI Dynamics Run. To improve both the numerical stability and
reliability of the inversion we developed a new procedure for the
identification and correction of outliers in a frequency data set. We present
evidence for a pronounced departure of the sound speed in the outer half of the
solar convection zone and in the subsurface shear layer from the radial sound
speed profile contained in Model~S of Christensen-Dalsgaard and his
collaborators that existed in the rising phase of Solar Cycle~24 during
mid-2010
The 1984 solar oscillation program of the Mount Wilson 60-foot tower
The instrumentation, data, and preliminary results from the summer, 1984, solar oscillation observing program which was carried out using the 60-foot tower telescope of the Mt. Wilson Observatory are described. This program was carried out with a dedicated solar oscillation observing system and obtained full-disk Dopplergrams every 40 seconds for up to 11 hours per day. Between June and September, 1984, observations were obtained with a Na magneto-optical filter on 90 different days. The data analysis has progressed to the point that spherical harmonic filter functions were employed to generate a few one-dimensional power spectra from a single day's observations
The Role of DNA Methylation in Regulation of the Murine Lhx3 Gene
LHX3 is a LIM-homeodomain transcription factor with critical roles in pituitary and nervous system development. Mutations in the LHX3 gene are associated with pediatric diseases featuring severe hormone deficiencies, hearing loss, developmental delay, and other symptoms. The mechanisms that govern LHX3/Lhx3 transcription are poorly understood. In this study, we examined the role of DNA methylation in the expression status of the mouse Lhx3 gene. Pituitary cells that do not normally express Lhx3 (Pit-1/0 cells) were treated with 5-aza-2’-deoxycytidine, a demethylating reagent. This treatment lead to activation of Lhx3 gene expression suggesting that methylation contributes to Lhx3 regulation. Treatment of Pit-1/0 pituitary cells with a combination of a demethylating reagent and a histone deacetylase inhibitor led to rapid activation of Lhx3 expression, suggesting possible crosstalk between DNA methylation and histone modification processes. To assess DNA methylation levels, treated and untreated Pit-1/0 genomic DNA was subjected to bisulfite conversion and sequencing. Treated Pit-1/0 cells had decreased methylation at specific sites in the Lhx3 locus compared to untreated cells. Chromatin immunoprecipitation assays demonstrated interactions between the MeCp2 methyl binding protein and Lhx3 promoter regions in the Pit-1/0 cell line. Overall, this study demonstrates that DNA methylation patterns of the Lhx3 gene are associated with its expression status
- …