6,271 research outputs found

    Automated Array Assembly Task In-depth Study of Silicon Wafer Surface Texturizing

    Get PDF
    Several aspects of silicon wafer surface texturizing were studied. A low cost cleaning method that utilizes recycled Freon in an ultrasonic vapor degreaser to remove organic and inorganic contaminants from the surface of silicon wafers as received from silicon suppliers was investigated. The use of clean dry air and high throughout wafer batch drying techniques was shown to lower the cost of wafer drying. A two stage texturizing process was examined for suitability in large scale production. Also, an in-depth gettering study with the two stage texturizing process was performed for the enhancement of solar cell efficiency, minimization of current versus voltage curve dispersion, and improvement in process reproducibility. The 10% efficiency improvement goal was exceeded for the near term implementation of flat plate photovoltaic cost reduction

    The Ellipticity and Orientation of Clusters of Galaxies from N-Body Experiments

    Get PDF
    In this study we use simulations of 1283^3 particles to study the ellipticity and orientation of clusters of galaxies in N-body simulations of differing power-law initial spectra (P(k) \propto k^n ,n = +1, 0, -1, -2),anddensityparameters(), and density parameters (\Omega_0 = 0.2to1.0).Furthermore,unlikemosttheoreticalstudieswemimicmostobserversbyremovingallparticleswhichlieatdistancesgreaterthan21/hMpcfromtheclustercenterofmass.Wecomputedtheaxialratioandtheprincipalaxesusingtheinertiatensorofeachcluster.Themeanellipticityofclustersincreasesstronglywithincreasing to 1.0). Furthermore, unlike most theoretical studies we mimic most observers by removing all particles which lie at distances greater than 2 1/h Mpc from the cluster center of mass. We computed the axial ratio and the principal axes using the inertia tensor of each cluster. The mean ellipticity of clusters increases strongly with increasing n.Wealsofindthatclusterstendtobecomemoresphericalatsmallerradii.Wecomparedtheorientationofaclustertotheorientationofneighboringclustersasafunctionofdistance(correlation).Inaddition,weconsideredwhetheraclusterâ€Čsmajoraxistendstoliealongthelineconnectingittoaneighboringcluster,asafunctionofdistance(alignment).Bothalignmentsandcorrelationswerecomputedinthreedimensionsandinprojectiontomimicobservationalsurveys.Ourresultsshowthatsignificantalignmentsexistforallspectraatsmallseparations(. We also find that clusters tend to become more spherical at smaller radii. We compared the orientation of a cluster to the orientation of neighboring clusters as a function of distance (correlation). In addition, we considered whether a cluster's major axis tends to lie along the line connecting it to a neighboring cluster, as a function of distance (alignment). Both alignments and correlations were computed in three dimensions and in projection to mimic observational surveys. Our results show that significant alignments exist for all spectra at small separations (D < 15 h^{-1}Mpc)butdropsoffatlargerdistanceinastrongly Mpc) but drops off at larger distance in a strongly n-$dependent way.Comment: 22 pages, requires aaspp4.sty, flushrt.sty, and epsf.sty Revised manuscript, accepted for publication in Ap

    Array automated assembly task, phase 2. Low cost silicon solar array project

    Get PDF
    Several modifications instituted in the wafer surface preparation process served to significantly reduce the process cost to 1.55 cents per peak watt in 1975 cents. Performance verification tests of a laser scanning system showed a limited capability to detect hidden cracks or defects, but with potential equipment modifications this cost effective system could be rendered suitable for applications. Installation of electroless nickel plating system was completed along with an optimization of the wafer plating process. The solder coating and flux removal process verification test was completed. An optimum temperature range of 500-550 C was found to produce uniform solder coating with the restriction that a modified dipping procedure is utilized. Finally, the construction of the spray-on dopant equipment was completed

    Einstein Cluster Alignments Revisited

    Get PDF
    We have examined whether the major axes of rich galaxy clusters tend to point toward their nearest neighboring cluster. We have used the data of Ulmer, McMillan, and Kowalski, who used position angles based on X-ray morphology. We also studied a subset of this sample with updated positions and distances from the MX Northern Abell Cluster Survey (for rich clusters (R≄1R \geq 1) with well known redshifts). A Kolmogorov-Smirnov (KS) test showed no significant signal for nonrandom angles on any scale ≀100h−1\leq 100h^{-1}Mpc. However, refining the null hypothesis with the Wilcoxon rank-sum test, we found a high confidence signal for alignment. Confidence levels increase to a high of 99.997% as only near neighbors which are very close are considered. We conclude there is a strong alignment signal in the data, consistent with gravitational instability acting on Gaussian perturbations.Comment: Minor revisions. To be published in Ap

    Trend in ice moistening the stratosphere – constraints from isotope data of water and methane

    Get PDF
    Water plays a major role in the chemistry and radiative budget of the stratosphere. Air enters the stratosphere predominantly in the tropics, where the very low temperatures around the tropopause constrain water vapour mixing ratios to a few parts per million. Observations of stratospheric water vapour show a large positive long-term trend, which can not be explained by change in tropopause temperatures. Trends in the partitioning between vapour and ice of water entering the stratosphere have been suggested to resolve this conundrum. We present measurements of stratospheric H_(2)O, HDO, CH_4 and CH_(3)D in the period 1991–2007 to evaluate this hypothesis. Because of fractionation processes during phase changes, the hydrogen isotopic composition of H_(2)O is a sensitive indicator of changes in the partitioning of vapour and ice. We find that the seasonal variations of H_(2)O are mirrored in the variation of the ratio of HDO to H_(2)O with a slope of the correlation consistent with water entering the stratosphere mainly as vapour. The variability in the fractionation over the entire observation period is well explained by variations in H_(2)O. The isotopic data allow concluding that the trend in ice arising from particulate water is no more than (0.01±0.13) ppmv/decade in the observation period. Our observations suggest that between 1991 and 2007 the contribution from changes in particulate water transported through the tropopause plays only a minor role in altering in the amount of water entering the stratosphere

    The Origin of the Brightest Cluster Galaxies

    Get PDF
    Most clusters and groups of galaxies contain a giant elliptical galaxy in their centres which far outshines and outweighs normal ellipticals. The origin of these brightest cluster galaxies is intimately related to the collapse and formation of the cluster. Using an N-body simulation of a cluster of galaxies in a hierarchical cosmological model, we show that galaxy merging naturally produces a massive, central galaxy with surface brightness and velocity dispersion profiles similar to observed BCG's. To enhance the resolution of the simulation, 100 dark halos at z=2z=2 are replaced with self-consistent disk+bulge+halo galaxy models following a Tully-Fisher relation using 100000 particles for the 20 largest galaxies and 10000 particles for the remaining ones. This technique allows us to analyze the stellar and dark matter components independently. The central galaxy forms through the merger of several massive galaxies along a filament early in the cluster's history. Galactic cannibalism of smaller galaxies through dynamical friction over a Hubble time only accounts for a small fraction of the accreted mass. The galaxy is a flattened, triaxial object whose long axis aligns with the primordial filament and the long axis of the cluster galaxy distribution agreeing with observed trends for galaxy-cluster alignment.Comment: Revised and accepted in ApJ, 25 pages, 10 figures, online version available at http://www.cita.utoronto.ca/~dubinski/bcg

    Two-Temperature Intracluster Medium in Merging Clusters of Galaxies

    Full text link
    We investigate the evolution of intracluster medium during a cluster merger, explicitly considering the relaxation process between the ions and electrons by N-body and hydrodynamical simulations. When two subclusters collide each other, a bow shock is formed between the centers of two substructures and propagate in both directions along the collision axis. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. In the post-shock region the energy is transported from the ions to electrons via Coulomb coupling. However, since the energy exchange timescale depends both on the gas density and temperature, distribution of electron temperature becomes more complex than that of the plasma mean temperature, especially in the expanding phase. After the collision of two subclusters, gas outflow occurs not only along the collision axis but also in its perpendicular direction. The gas which is originally located in the central part of the subclusters moves both in the parallel and perpendicular directions. Since the equilibrium timescale of the gas along these directions is relatively short, temperature difference between ions and electrons is larger in the directions tilted by the angles of ±45∘\pm 45^\circ with respect to the collision axis. The electron temperature could be significantly lower that the plasma mean temperature by ∌50\sim 50 % at most. The significance of our results in the interpretation of X-ray observations is briefly discussed.Comment: 20 pages, 11 figures, Accepted for publication in Ap

    Cluster Alignments and Ellipticities in LCDM Cosmology

    Full text link
    The ellipticities and alignments of clusters of galaxies, and their evolution with redshift, are examined in the context of a Lambda-dominated cold dark matter cosmology. We use a large-scale, high-resolution N-body simulation to model the matter distribution in a light cone containing ~10^6 clusters out to redshifts of z=3. Cluster ellipticities are determined as a function of mass, radius, and redshift, both in 3D and in projection. We find strong cluster ellipticities: the mean ellipticity increases with redshift from 0.3 at z=0 to 0.5 at z=3, for both 3D and 2D ellipticities; the evolution is well-fit by e=0.33+0.05z. The ellipticities increase with cluster mass and with cluster radius; the main cluster body is more elliptical than the cluster cores, but the increase of ellipticities with redshift is preserved. Using the fitted cluster ellipsoids, we determine the alignment of clusters as a function of their separation. We find strong alignment of clusters for separations <100 Mpc/h; the alignment increases with decreasing separation and with increasing redshift. The evolution of clusters from highly aligned and elongated systems at early times to lower alignment and elongation at present reflects the hierarchical and filamentary nature of structure formation. These measures of cluster ellipticity and alignment will provide a new test of the current cosmological model when compared with upcoming cluster surveys.Comment: 29 pages including 13 figures, to appear in ApJ Jan. 2005 (corrected typos, added reference
    • 

    corecore