7,048 research outputs found

    Controlling Charging and Arcing on a Solar Powered Auroral Orbiting Spacecraft

    Get PDF
    The Global Precipitation Measurement satellite (GPM) will be launched into a high inclination (65 degree) orbit to monitor rainfall on a global scale. Satellites in high inclination orbits have been shown to charge to high negative potentials, with the possibility of arcing on the solar arrays, when three conditions are met: a drop in plasma density below approximately 10,000 cm(exp -3), an injection of energetic electrons of energy more that 7-10 keV, and passage through darkness. Since all of these conditions are expected to obtain for some of the GPM orbits, charging calculations were done using first the Space Environment and Effects (SEE) Program Interactive Spacecraft Charging Handbook, and secondly the NASA Air-force Spacecraft Charging Analyzer Program (NASCAP-2k). The object of the calculations was to determine if charging was likely for the GPM configuration and materials, and specifically to see if choosing a particular type of thermal white paint would help minimize charging. A detailed NASCAP-2k geometrical model of the GPM spacecraft was built, with such a large number of nodes that it challenged the capability of NASCAP-2k to do the calculations. The results of the calculations were that for worst-case auroral charging conditions, charging to levels on the order of -120 to -230 volts could occur on GPM during night-time, with differential voltages on the solar arrays that might lead to solar array arcing. In sunlit conditions, charging did not exceed -20 V under any conditions. The night-time results were sensitive to the spacecraft surface materials chosen. For non-conducting white paints, the charging was severe, and could continue unabated throughout the passage of GPM through the auroral zone. Somewhat conductive (dissipative) white paints minimized the night-time charging to levels of -120 V or less, and thus were recommended for GPM thermal control. It is shown that the choice of thermal control paints is important to prevent arcing on high inclination orbiting spacecraft solar arrays as well as for GEO satellites, even for solar array designs chosen to minimize arcing

    A Tale of Two DRAGGNs: A Hybrid Approach for Interpreting Action-Oriented and Goal-Oriented Instructions

    Full text link
    Robots operating alongside humans in diverse, stochastic environments must be able to accurately interpret natural language commands. These instructions often fall into one of two categories: those that specify a goal condition or target state, and those that specify explicit actions, or how to perform a given task. Recent approaches have used reward functions as a semantic representation of goal-based commands, which allows for the use of a state-of-the-art planner to find a policy for the given task. However, these reward functions cannot be directly used to represent action-oriented commands. We introduce a new hybrid approach, the Deep Recurrent Action-Goal Grounding Network (DRAGGN), for task grounding and execution that handles natural language from either category as input, and generalizes to unseen environments. Our robot-simulation results demonstrate that a system successfully interpreting both goal-oriented and action-oriented task specifications brings us closer to robust natural language understanding for human-robot interaction.Comment: Accepted at the 1st Workshop on Language Grounding for Robotics at ACL 201

    A Tale of Two DRAGGNs: A Hybrid Approach for Interpreting Action-Oriented and Goal-Oriented Instructions

    Full text link
    Robots operating alongside humans in diverse, stochastic environments must be able to accurately interpret natural language commands. These instructions often fall into one of two categories: those that specify a goal condition or target state, and those that specify explicit actions, or how to perform a given task. Recent approaches have used reward functions as a semantic representation of goal-based commands, which allows for the use of a state-of-the-art planner to find a policy for the given task. However, these reward functions cannot be directly used to represent action-oriented commands. We introduce a new hybrid approach, the Deep Recurrent Action-Goal Grounding Network (DRAGGN), for task grounding and execution that handles natural language from either category as input, and generalizes to unseen environments. Our robot-simulation results demonstrate that a system successfully interpreting both goal-oriented and action-oriented task specifications brings us closer to robust natural language understanding for human-robot interaction.Comment: Accepted at the 1st Workshop on Language Grounding for Robotics at ACL 201

    Angiogenic Factors and Renal Disease in Pregnancy

    Get PDF
    Background. Preeclampsia is difficult to diagnose in patients with underlying renal disease and proteinuria. Prior studies show that there is an angiogenic factor imbalance with elevated levels of antiangiogenic proteins soluble fms-like tyrosine kinase 1 (sFlt1) and soluble endoglin (sEng) and reduced levels of the proangiogenic protein, placental growth factor (PlGF) in women with preeclampsia. These angiogenic biomarkers may be useful in distinguishing preeclampsia from other conditions of pregnancy, which may present with overlapping clinical characteristics. Cases. Case 1: A multiparous woman at 18 weeks gestation with nephrotic syndrome presented with hypertensive emergency and worsening renal insufficiency. She underwent induction of labor for severe preeclampsia. Her sFlt1 and sEng levels were at the 97 percentile while her PlGF level was undetectable (less than the 1st percentile). Case 2: A nulliparous woman with lupus nephritis at 22 weeks gestation presented with fetal demise and heart failure. Three weeks previously, the patient had developed thrombocytopenia and hypertensive urgency. She underwent dilation and evacuation. Her angiogenic profile was consistent with severe preeclampsia. Conclusion. Angiogenic factors may provide evidence to support a diagnosis of preeclampsia in patients with preexisting renal disease and proteinuria, conditions in which the classical definition of hypertension and proteinuria cannot be used

    Trend in ice moistening the stratosphere – constraints from isotope data of water and methane

    Get PDF
    Water plays a major role in the chemistry and radiative budget of the stratosphere. Air enters the stratosphere predominantly in the tropics, where the very low temperatures around the tropopause constrain water vapour mixing ratios to a few parts per million. Observations of stratospheric water vapour show a large positive long-term trend, which can not be explained by change in tropopause temperatures. Trends in the partitioning between vapour and ice of water entering the stratosphere have been suggested to resolve this conundrum. We present measurements of stratospheric H_(2)O, HDO, CH_4 and CH_(3)D in the period 1991–2007 to evaluate this hypothesis. Because of fractionation processes during phase changes, the hydrogen isotopic composition of H_(2)O is a sensitive indicator of changes in the partitioning of vapour and ice. We find that the seasonal variations of H_(2)O are mirrored in the variation of the ratio of HDO to H_(2)O with a slope of the correlation consistent with water entering the stratosphere mainly as vapour. The variability in the fractionation over the entire observation period is well explained by variations in H_(2)O. The isotopic data allow concluding that the trend in ice arising from particulate water is no more than (0.01±0.13) ppmv/decade in the observation period. Our observations suggest that between 1991 and 2007 the contribution from changes in particulate water transported through the tropopause plays only a minor role in altering in the amount of water entering the stratosphere

    Suppression of mitochondrial respiration through recruitment of p160 myb binding protein to PGC-1α : modulation by p38 MAPK

    Get PDF
    The transcriptional coactivator PPAR gamma coactivator 1 α (PGC-1α) is a key regulator of metabolic processes such as mitochondrial biogenesis and respiration in muscle and gluconeogenesis in liver. Reduced levels of PGC-1α in humans have been associated with type II diabetes. PGC-1α contains a negative regulatory domain that attenuates its transcriptional activity. This negative regulation is removed by phosphorylation of PGC-1α by p38 MAPK, an important kinase downstream of cytokine signaling in muscle and β-adrenergic signaling in brown fat. We describe here the identification of p160 myb binding protein (p160MBP) as a repressor of PGC-1α. The binding and repression of PGC-1α by p160MBP is disrupted by p38 MAPK phosphorylation of PGC-1α. Adenoviral expression of p160MBP in myoblasts strongly reduces PGC-1α's ability to stimulate mitochondrial respiration and the expression of the genes of the electron transport system. This repression does not require removal of PGC-1α from chromatin, suggesting that p160MBP is or recruits a direct transcriptional suppressor. Overall, these data indicate that p160MBP is a powerful negative regulator of PGC-1α function and provide a molecular mechanism for the activation of PGC-1α by p38 MAPK. The discovery of p160MBP as a PGC-1α regulator has important implications for the understanding of energy balance and diabetes

    Two-Temperature Intracluster Medium in Merging Clusters of Galaxies

    Full text link
    We investigate the evolution of intracluster medium during a cluster merger, explicitly considering the relaxation process between the ions and electrons by N-body and hydrodynamical simulations. When two subclusters collide each other, a bow shock is formed between the centers of two substructures and propagate in both directions along the collision axis. The shock primarily heats the ions because the kinetic energy of an ion entering the shock is larger than that of an electron by the ratio of masses. In the post-shock region the energy is transported from the ions to electrons via Coulomb coupling. However, since the energy exchange timescale depends both on the gas density and temperature, distribution of electron temperature becomes more complex than that of the plasma mean temperature, especially in the expanding phase. After the collision of two subclusters, gas outflow occurs not only along the collision axis but also in its perpendicular direction. The gas which is originally located in the central part of the subclusters moves both in the parallel and perpendicular directions. Since the equilibrium timescale of the gas along these directions is relatively short, temperature difference between ions and electrons is larger in the directions tilted by the angles of ±45\pm 45^\circ with respect to the collision axis. The electron temperature could be significantly lower that the plasma mean temperature by 50\sim 50 % at most. The significance of our results in the interpretation of X-ray observations is briefly discussed.Comment: 20 pages, 11 figures, Accepted for publication in Ap
    corecore