31 research outputs found

    Use of ChAd3-EBO-Z Ebola virus vaccine in Malian and US adults, and boosting of Malian adults with MVA-BN-Filo: a phase 1, single-blind, randomised trial, a phase 1b, open-label and double-blind, dose-escalation trial, and a nested, randomised, double-blind, placebo-controlled trial

    Get PDF
    SummaryBackgroundThe 2014 west African Zaire Ebola virus epidemic prompted worldwide partners to accelerate clinical development of replication-defective chimpanzee adenovirus 3 vector vaccine expressing Zaire Ebola virus glycoprotein (ChAd3-EBO-Z). We aimed to investigate the safety, tolerability, and immunogenicity of ChAd3-EBO-Z in Malian and US adults, and assess the effect of boosting of Malians with modified vaccinia Ankara expressing Zaire Ebola virus glycoprotein and other filovirus antigens (MVA-BN-Filo).MethodsIn the phase 1, single-blind, randomised trial of ChAd3-EBO-Z in the USA, we recruited adults aged 18–65 years from the University of Maryland medical community and the Baltimore community. In the phase 1b, open-label and double-blind, dose-escalation trial of ChAd3-EBO-Z in Mali, we recruited adults 18–50 years of age from six hospitals and health centres in Bamako (Mali), some of whom were also eligible for a nested, randomised, double-blind, placebo-controlled trial of MVA-BN-Filo. For randomised segments of the Malian trial and for the US trial, we randomly allocated participants (1:1; block size of six [Malian] or four [US]; ARB produced computer-generated randomisation lists; clinical staff did randomisation) to different single doses of intramuscular immunisation with ChAd3-EBO-Z: Malians received 1 × 1010 viral particle units (pu), 2·5 × 1010 pu, 5 × 1010 pu, or 1 × 1011 pu; US participants received 1 × 1010 pu or 1 × 1011 pu. We randomly allocated Malians in the nested trial (1:1) to receive a single dose of 2 × 108 plaque-forming units of MVA-BN-Filo or saline placebo. In the double-blind segments of the Malian trial, investigators, clinical staff, participants, and immunology laboratory staff were masked, but the study pharmacist (MK), vaccine administrator, and study statistician (ARB) were unmasked. In the US trial, investigators were not masked, but participants were. Analyses were per protocol. The primary outcome was safety, measured with occurrence of adverse events for 7 days after vaccination. Both trials are registered with ClinicalTrials.gov, numbers NCT02231866 (US) and NCT02267109 (Malian).FindingsBetween Oct 8, 2014, and Feb 16, 2015, we randomly allocated 91 participants in Mali (ten [11%] to 1 × 1010 pu, 35 [38%] to 2·5 × 1010 pu, 35 [38%] to 5 × 1010 pu, and 11 [12%] to 1 × 1011 pu) and 20 in the USA (ten [50%] to 1 × 1010 pu and ten [50%] to 1 × 1011 pu), and boosted 52 Malians with MVA-BN-Filo (27 [52%]) or saline (25 [48%]). We identified no safety concerns with either vaccine: seven (8%) of 91 participants in Mali (five [5%] received 5 × 1010 and two [2%] received 1 × 1011 pu) and four (20%) of 20 in the USA (all received 1 × 1011 pu) given ChAd3-EBO-Z had fever lasting for less than 24 h, and 15 (56%) of 27 Malians boosted with MVA-BN-Filo had injection-site pain or tenderness.Interpretation1 × 1011 pu single-dose ChAd3-EBO-Z could suffice for phase 3 efficacy trials of ring-vaccination containment needing short-term, high-level protection to interrupt transmission. MVA-BN-Filo boosting, although a complex regimen, could confer long-lived protection if needed (eg, for health-care workers).FundingWellcome Trust, Medical Research Council UK, Department for International Development UK, National Cancer Institute, Frederick National Laboratory for Cancer Research, Federal Funds from National Institute of Allergy and Infectious Diseases

    Strategies for Enhancement of Live-Attenuated Salmonella-Based Carrier Vaccine Immunogenicity

    No full text
    The use of live-attenuated bacterial vaccines as carriers for the mucosal delivery of foreign antigens to stimulate the mucosal immune system was first proposed over three decades ago. This novel strategy aimed to induce immunity against at least two distinct pathogens using a single bivalent carrier vaccine. It was first tested using a live-attenuated Salmonella enterica serovar Typhi strain in clinical trials in 1984, with excellent humoral immune responses against the carrier strain but only modest responses elicited against the foreign antigen. Since then, clinical trials with additional Salmonella-based carrier vaccines have been conducted. As with the original trial, only modest foreign antigen-specific immunity was achieved in most cases, despite the incorporation of incremental improvements in antigen expression technologies and carrier design over the years. In this review, we will attempt to deconstruct carrier vaccine immunogenicity in humans by examining the basis of bacterial immunity in the human gastrointestinal tract and how the gut detects and responds to pathogens versus benign commensal organisms. Carrier vaccine design will then be explored to determine the feasibility of retaining as many characteristics of a pathogen as possible to elicit robust carrier and foreign antigen-specific immunity, while avoiding over-stimulation of unacceptably reactogenic inflammatory responses

    Ex Vivo Kinetics of Early and Long-Term Multifunctional Human Leukocyte Antigen E-Specific CD8+ Cells in Volunteers Immunized with the Ty21a Typhoid Vaccine ▿

    No full text
    T cells are likely to play an important role in the host defense against Salmonella enterica serovar Typhi, the causative agent of typhoid fever. We have shown that HLA-E can function as a restriction element for S. Typhi-specific CD8+ T cells. Because of the potential importance of HLA-E-restricted CD8+ responses in resistance to Salmonella infection, we characterized these responses and investigated their kinetics of appearance and persistence in volunteers immunized orally with the licensed attenuated Ty21a strain typhoid vaccine. Cells were obtained from volunteers before and at days 2, 4, 7, 10, 14, 28, 42, 56, 120, 180, 360, and 720 after immunization. An ex vivo multicolor staining panel including antibodies to CD107a and -b, interleukin-2, gamma interferon (IFN-γ), and tumor necrosis factor alpha (TNF-α) was used to functionally assess memory T-cell subsets by flow cytometry. Increases in cytokine-secreting CD8+ cells were observed in the T effector/memory (TEM) and CD45RA+ TEM (TEMRA) subsets as early as 4 days after immunization and persisted, particularly in the TEMRA subset, up to 2 years after immunization. The majority of HLA-E-restricted CD8+ cells 28 to 56 days after immunization coexpressed CD107, IFN-γ, and TNF-α, showing characteristic features of multifunctional T cells. In summary, the multifunctionality and longevity of the HLA-E-restricted CD8 responses observed in this study highlight their significance in adaptive immunity to S. Typhi. Finally, this is the first demonstration, in either animals or humans, of the presence of long-term multifunctional HLA-E-restricted CD8+ cells after immunization

    Immunization of Volunteers with Salmonella enterica Serovar Typhi Strain Ty21a Elicits the Oligoclonal Expansion of CD8(+) T Cells with Predominant Vβ Repertoires

    No full text
    CD8(+) T cells are likely to play an important role in host defense against Salmonella enterica serovar Typhi by several effector mechanisms, including lysis of infected cells (cytotoxicity) and gamma interferon (IFN-γ) secretion. In an effort to better understand these responses, we studied the T-cell receptor (TCR) repertoire of serovar Typhi-specific CD8(+) T cells in humans. To this end, we determined the TCR beta chain (Vβ) usage of CD8(+) T cells from three volunteers orally immunized with Ty21a typhoid vaccine by flow cytometry using a panel of monoclonal antibodies. Although TCR Vβ usage varied among volunteers, we identified oligoclonal Vβ subset expansions in individual volunteers (Vβ 2, 5.1, 8, 17, and 22 in volunteer 1; Vβ 1, 2, 5.1, 14, 17, and 22 in volunteer 2; and Vβ 3, 8, 14, and 16 in volunteer 3). These subsets were antigen specific, as shown by cytotoxicity and IFN-γ secretion assays on Vβ sorted cells and on T-cell clones derived from these volunteers. Moreover, eight-color flow cytometric analysis showed that these clones exhibited a T effector memory phenotype (i.e., CCR7(−) CD27(−) CD45RO(+) CD62L(−)) and coexpressed gut homing molecules (e.g., high levels of integrin α4β7, intermediate levels of CCR9, and low levels of CD103). In conclusion, our results show that long-term T-cell responses to serovar Typhi in Ty21a vaccinees are oligoclonal, involving multiple TCR Vβ families. Moreover, these serovar Typhi-specific CD8(+) T cells bearing defined Vβ specificities are phenotypically and functionally consistent with T effector memory cells with preferential gut homing potential

    Sports Event Planning with Children's Physical Activities Recreation Example

    No full text
    Souhrn Název práce: Plánování sportovní akce na příkladu dětské pohybové rekreace Tittle ofthe work: Sports action planning on example of children's locomotive recreation Cíle práce: Metoda: Výsledky: Klíčová slova: Sestavení přesného a podrobného postupu pro organizaci letního dětského tábora. Aplikace vybraných manažerských technik na proces plánování a přípravy dětské pohybové rekreace. V této práci byla použita metoda popisné analýzy získaných materiálů a informací souvisejících s organizací dětského letního tábora. Na popisnou analýzu navazuje síťová analýza a analýza SWOT zhodnocující postup provozovatele při organizaci dětské pohybové rekreace. Ukazují náročnost orgamzace dětské pohybové rekreace. Snaží se budoucím provozovatelům přípravu letního dětského tábora zjednodušit, upozornit na největší problémy, úskalí a jejich řešení. dětská pohybová rekreace, letní dětský tábor, provozovatel, síťová analýza, kritická cesta, SWOT analýzaManagementFaculty of Physical Education and SportFakulta tělesné výchovy a sport

    Data from: A clinically parameterized mathematical model of Shigella immunity to inform vaccine design

    No full text
    We refine and clinically parameterize a mathematical model of the humoral immune response against Shigella, a diarrheal bacteria that infects 80-165 million people and kills an estimated 600,000 people worldwide each year. Using Latin hypercube sampling and Monte Carlo simulations for parameter estimation, we fit our model to human immune data from two Shigella EcSf2a-2 vaccine trials and a rechallenge study in which antibody and B-cell responses against Shigella's lipopolysaccharide (LPS) and O-membrane proteins (OMP) were recorded. The clinically grounded model is used to mathematically investigate which key immune mechanisms and bacterial targets confer immunity against Shigella and to predict which humoral immune components should be elicited to create a protective vaccine against Shigella. The model offers insight into why the EcSf2a-2 vaccine had low efficacy and demonstrates that at a group level a humoral immune response induced by EcSf2a-2 vaccine or wild-type challenge against Shigella's LPS or OMP does not appear sufficient for protection. That is, the model predicts an uncontrolled infection of gut epithelial cells that is present across all best-fit model parameterizations when fit to EcSf2a-2 vaccine or wild-type challenge data. Using sensitivity analysis, we explore which model parameter values must be altered to prevent the destructive epithelial invasion by Shigella bacteria and identify four key parameter groups as potential vaccine targets or immune correlates: 1) the rate that Shigella migrates into the lamina propria or epithelium, 2) the rate that memory B cells (BM) differentiate into antibody-secreting cells (ASC), 3) the rate at which antibodies are produced by activated ASC, and 4) the Shigella-specific BM carrying capacity. This paper underscores the need for a multifaceted approach in ongoing efforts to design an effective Shigella vaccine

    A clinically parameterized mathematical model of Shigella immunity to inform vaccine design.

    No full text
    We refine and clinically parameterize a mathematical model of the humoral immune response against Shigella, a diarrheal bacteria that infects 80-165 million people and kills an estimated 600,000 people worldwide each year. Using Latin hypercube sampling and Monte Carlo simulations for parameter estimation, we fit our model to human immune data from two Shigella EcSf2a-2 vaccine trials and a rechallenge study in which antibody and B-cell responses against Shigella's lipopolysaccharide (LPS) and O-membrane proteins (OMP) were recorded. The clinically grounded model is used to mathematically investigate which key immune mechanisms and bacterial targets confer immunity against Shigella and to predict which humoral immune components should be elicited to create a protective vaccine against Shigella. The model offers insight into why the EcSf2a-2 vaccine had low efficacy and demonstrates that at a group level a humoral immune response induced by EcSf2a-2 vaccine or wild-type challenge against Shigella's LPS or OMP does not appear sufficient for protection. That is, the model predicts an uncontrolled infection of gut epithelial cells that is present across all best-fit model parameterizations when fit to EcSf2a-2 vaccine or wild-type challenge data. Using sensitivity analysis, we explore which model parameter values must be altered to prevent the destructive epithelial invasion by Shigella bacteria and identify four key parameter groups as potential vaccine targets or immune correlates: 1) the rate that Shigella migrates into the lamina propria or epithelium, 2) the rate that memory B cells (BM) differentiate into antibody-secreting cells (ASC), 3) the rate at which antibodies are produced by activated ASC, and 4) the Shigella-specific BM carrying capacity. This paper underscores the need for a multifaceted approach in ongoing efforts to design an effective Shigella vaccine

    Applying mathematical tools to accelerate vaccine development: modeling Shigella immune dynamics.

    Get PDF
    We establish a mathematical framework for studying immune interactions with Shigella, a bacteria that kills over one million people worldwide every year. The long-term goal of this novel approach is to inform Shigella vaccine design by elucidating which immune components and bacterial targets are crucial for establishing Shigella immunity. Our delay differential equation model focuses on antibody and B cell responses directed against antigens like lipopolysaccharide in Shigella's outer membrane. We find that antibody-based vaccines targeting only surface antigens cannot elicit sufficient immunity for protection. Additional boosting prior to infection would require a four-orders-of-magnitude increase in antibodies to sufficiently prevent epithelial invasion. However, boosting anti-LPS B memory can confer protection, which suggests these cells may correlate with immunity. We see that IgA antibodies are slightly more effective per molecule than IgG, but more total IgA is required due to spatial functionality. An extension of the model reveals that targeting both LPS and epithelial entry proteins is a promising avenue to advance vaccine development. This paper underscores the importance of multifaceted immune targeting in creating an effective Shigella vaccine. It introduces mathematical models to the Shigella vaccine development effort and lays a foundation for joint theoretical/experimental/clinical approaches to Shigella vaccine design

    Numerical simulations of model dynamics for the best fits using both primary and secondary 2457T rechallenge data (2T: 2457Tx1 and 2T: 2457Tx2, respectively).

    No full text
    <p>Vertical axis units are number of Ab per mL (highest three lines: <i>A</i><sub><i>E</i></sub>, <i>A</i><sub><i>I</i></sub>, <i>G</i>), number of ASC (middle lines: <i>P</i><sub><i>A</i></sub>, <i>P</i><sub><i>G</i></sub>), number of B<sub>M</sub> (lower flat lines: <i>M</i><sub><i>A</i></sub>, <i>M</i><sub><i>G</i></sub>), and bacterial cfu (lower dashed lines: <i>S</i><sub><i>E</i></sub>, <i>S</i><sub><i>I</i>1</sub>, <i>S</i><sub><i>N</i></sub>, <i>S</i><sub><i>I</i>2</sub>; rising purple dashed line: <i>S</i><sub><i>C</i></sub>). The model parameters are fit to both primary and secondary infection data for LPS (a–c) or OMP (d–e). Primary (1) infection data is from volunteers who received a single wild-type challenge in the 2457T rechallenge study (2T: 2457Tx1). Secondary (2) infection data is from volunteers who received two 2457T challenges (one as controls during the EcSf2a-2 trial and a second one during the 2457T rechallenge study, 2T: 2457Tx2). No tertiary vaccine-challenge-challenge infection data are included (2T: EcSf2a-2x1, 2457Tx2). To match clinical conditions, both the primary and secondary infections are initialized at 1,400 cfu. No best-fit parameterizations gave a stable nontrivial equilibrium when the model was fit to both primary and secondary 2457T OMP data. Resulting model dynamics using the joint fits show predicted Primary (a, d), Stable Secondary (b), and Unstable Secondary (c,e) Dynamics as described in previous figures.</p
    corecore