6 research outputs found
Effects of stigmergic and explicit coordination on Wikipedia article quality
Prior research on Wikipedia has noted the importance of both explicit coordination of edits (i.e., through the article Talk page) and stigmergic coordination (i.e., through the article itself). Using a panel data set of article quality and edits for 23 articles over time, we examine the impact of different kinds of edits on article quality. We find that stigmergically-coordinated edits seem to have the biggest effect on quality, but that explicit coordination of major edits also predicts article quality. The findings have implications for both research on coordination in Wikipedia and for supporting editor
Mining team characteristics to predict Wikipedia article quality
International audienceIn this study, we were interested in studying which characteristics of virtual teams are good predictors for the quality of their production. The experiment involved obtaining the Spanish Wikipedia database dump and applying different data mining techniques suitable for large data sets to label the whole set of articles according to their quality (comparing them with the Featured/Good Articles, or FA/GA). Then we created the attributes that describe the characteristics of the team who produced the articles and using decision tree methods, we obtained the most relevant characteristics of the teams that produced FA/GA. The team's maximum efficiency and the total length of contribution are the most important predictors. This article contributes to the literature on virtual team organization
AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives
In theory, building automation and management systems (BAMSs) can provide all the components and functionalities required for analyzing and operating buildings. However, in reality, these systems can only ensure the control of heating ventilation and air conditioning system systems. Therefore, many other tasks are left to the operator, e.g. evaluating buildings’ performance, detecting abnormal energy consumption, identifying the changes needed to improve efficiency, ensuring the security and privacy of end-users, etc. To that end, there has been a movement for developing artificial intelligence (AI) big data analytic tools as they offer various new and tailor-made solutions that are incredibly appropriate for practical buildings’ management. Typically, they can help the operator in (i) analyzing the tons of connected equipment data; and; (ii) making intelligent, efficient, and on-time decisions to improve the buildings’ performance. This paper presents a comprehensive systematic survey on using AI-big data analytics in BAMSs. It covers various AI-based tasks, e.g. load forecasting, water management, indoor environmental quality monitoring, occupancy detection, etc. The first part of this paper adopts a well-designed taxonomy to overview existing frameworks. A comprehensive review is conducted about different aspects, including the learning process, building environment, computing platforms, and application scenario. Moving on, a critical discussion is performed to identify current challenges. The second part aims at providing the reader with insights into the real-world application of AI-big data analytics. Thus, three case studies that demonstrate the use of AI-big data analytics in BAMSs are presented, focusing on energy anomaly detection in residential and office buildings and energy and performance optimization in sports facilities. Lastly, future directions and valuable recommendations are identified to improve the performance and reliability of BAMSs in intelligent buildings
Next-generation energy systems for sustainable smart cities: Roles of transfer learning
Smart cities attempt to reach net-zero emissions goals by reducing wasted energy while improving grid stability and meeting service demand. This is possible by adopting next-generation energy systems, which leverage artificial intelligence, the Internet of things (IoT), and communication technologies to collect and analyze big data in real-time and effectively run city services. However, training machine learning algorithms to perform various energy-related tasks in sustainable smart cities is a challenging data science task. These algorithms might not perform as expected, take much time in training, or do not have enough input data to generalize well. To that end, transfer learning (TL) has been proposed as a promising solution to alleviate these issues. To the best of the authors’ knowledge, this paper presents the first review of the applicability of TL for energy systems by adopting a well-defined taxonomy of existing TL frameworks. Next, an in-depth analysis is carried out to identify the pros and cons of current techniques and discuss unsolved issues. Moving on, two case studies illustrating the use of TL for (i) energy prediction with mobility data and (ii) load forecasting in sports facilities are presented. Lastly, the paper ends with a discussion of the future directions
The evolution of online co-production groups and its effects on content quality
International audienceWhat types of social processes generate strong online co-production groups? How do these groups evolve to reach peak performance? How does the quality of the products generated by the groups co-vary with the evolution of their social systems over time? The paper analyzes the entire English and French Wikipedia editorial histories, from their inception until 2015, identifying the specific phases through which two different massive online production systems grew. By tracking the emergence of the high contribution group across two different online spaces on a fine-grained level, the paper uncovers their temporal evolutions and impacts on the organization of social systems. Furthermore, the paper reveals how the quality of the content co-evolves with the emergence of the production groups through each growth phase
AI-big data analytics for building automation and management systems: a survey, actual challenges and future perspectives
In theory, building automation and management systems (BAMSs) can provide all the components and functionalities required for analyzing and operating buildings. However, in reality, these systems can only ensure the control of heating ventilation and air conditioning system systems. Therefore, many other tasks are left to the operator, e.g. evaluating buildings’ performance, detecting abnormal energy consumption, identifying the changes needed to improve efficiency, ensuring the security and privacy of end-users, etc. To that end, there has been a movement for developing artificial intelligence (AI) big data analytic tools as they offer various new and tailor-made solutions that are incredibly appropriate for practical buildings’ management. Typically, they can help the operator in (i) analyzing the tons of connected equipment data; and; (ii) making intelligent, efficient, and on-time decisions to improve the buildings’ performance. This paper presents a comprehensive systematic survey on using AI-big data analytics in BAMSs. It covers various AI-based tasks, e.g. load forecasting, water management, indoor environmental quality monitoring, occupancy detection, etc. The first part of this paper adopts a well-designed taxonomy to overview existing frameworks. A comprehensive review is conducted about different aspects, including the learning process, building environment, computing platforms, and application scenario. Moving on, a critical discussion is performed to identify current challenges. The second part aims at providing the reader with insights into the real-world application of AI-big data analytics. Thus, three case studies that demonstrate the use of AI-big data analytics in BAMSs are presented, focusing on energy anomaly detection in residential and office buildings and energy and performance optimization in sports facilities. Lastly, future directions and valuable recommendations are identified to improve the performance and reliability of BAMSs in intelligent buildings.Other Information Published in: Artificial Intelligence Review License: https://creativecommons.org/licenses/by/4.0See article on publisher's website: http://dx.doi.org/10.1007/s10462-022-10286-2</p