21 research outputs found

    The long noncoding RNA mimi scaffolds neuronal granules to maintain nervous system maturity

    Get PDF
    RNA binding proteins and messenger RNAs (mRNAs) assemble into ribonucleoprotein granules that regulate mRNA trafficking, local translation, and turnover. The dysregulation of RNA-protein condensation disturbs synaptic plas-ticity and neuron survival and has been widely associated with human neurological disease. Neuronal granules are thought to condense around particular proteins that dictate the identity and composition of each granule type. Here, we show in Drosophila that a previously uncharacterized long noncoding RNA, mimi, is required to scaffold large neuronal granules in the adult nervous system. Neuronal ELAV-like proteins directly bind mimi and mediate granule assembly, while Staufen maintains condensate integrity. mimi granules contain mRNAs and proteins involved in synaptic processes; granule loss in mimi mutant flies impairs nervous system maturity and neuropeptide-mediated signaling and causes phenotypes of neurodegeneration. Our work reports an architectural RNA for a neuronal granule and provides a handle to interrogate functions of a condensate independently of those of its constituent proteins

    Serum Stabilities of Short Tryptophan- and Arginine-Rich Antimicrobial Peptide Analogs

    Get PDF
    Several short antimicrobial peptides that are rich in tryptophan and arginine residues were designed with a series of simple modifications such as end capping and cyclization. The two sets of hexapeptides are based on the Trp- and Arg-rich primary sequences from the "antimicrobial centre" of bovine lactoferricin as well as an antimicrobial sequence obtained through the screening of a hexapeptide combinatorial library.HPLC, mass spectrometry and antimicrobial assays were carried out to explore the consequences of the modifications on the serum stability and microbicidal activity of the peptides. The results show that C-terminal amidation increases the antimicrobial activity but that it makes little difference to its proteolytic degradation in human serum. On the other hand, N-terminal acetylation decreases the peptide activities but significantly increases their protease resistance. Peptide cyclization of the hexameric peptides was found to be highly effective for both serum stability and antimicrobial activity. However the two cyclization strategies employed have different effects, with disulfide cyclization resulting in more active peptides while backbone cyclization results in more proteolytically stable peptides. However, the benefit of backbone cyclization did not extend to longer 11-mer peptides derived from the same region of lactoferricin. Mass spectrometry data support the serum stability assay results and allowed us to determine preferred proteolysis sites in the peptides. Furthermore, isothermal titration calorimetry experiments showed that the peptides all had weak interactions with albumin, the most abundant protein in human serum.Taken together, the results provide insight into the behavior of the peptides in human serum and will therefore aid in advancing antimicrobial peptide design towards systemic applications

    Resurrection and redescription of Varestrongylus alces (Nematoda; Protostrongylidae), a lungworm of the Eurasian moose (Alces alces), with report on associated pathology

    Get PDF
    Varestrongylus alces, a lungworm in Eurasian moose from Europe has been considered a junior synonym of Varestrongylus capreoli, in European roe deer, due to a poorly detailed morphological description and the absence of a type-series. Methods Specimens used in the redescription were collected from lesions in the lungs of Eurasian moose, from Vestby, Norway. Specimens were described based on comparative morphology and integrated approaches. Molecular identification was based on PCR, cloning and sequencing of the ITS-2 region of the nuclear ribosomal DNA. Phylogenetic analysis compared V. alces ITS-2 sequences to these of other Varestrongylus species and other protostrongylids. Results Varestrongylus alces is resurrected for protostrongylid nematodes of Eurasian moose from Europe. Varestrongylus alces causes firm nodular lesions that are clearly differentiated from the adjacent lung tissue. Histologically, lesions are restricted to the parenchyma with adult, egg and larval parasites surrounded by multinucleated giant cells, macrophages, eosinophilic granulocytes, lymphocytes. The species is valid and distinct from others referred to Varestrongylus, and should be separated from V. capreoli. Morphologically, V. alces can be distinguished from other species by characters in the males that include a distally bifurcated gubernaculum, arched denticulate crura, spicules that are equal in length and relatively short, and a dorsal ray that is elongate and bifurcated. Females have a well-developed provagina, and are very similar to those of V. capreoli. Morphometrics of first-stage larvae largely overlap with those of other Varestrongylus. Sequences of the ITS-2 region strongly support mutual independence of V. alces, V. cf. capreoli, and the yet undescribed species of Varestrongylus from North American ungulates. These three taxa form a well-supported crown-clade as the putative sister of V. alpenae. The association of V. alces and Alces or its ancestors is discussed in light of host and parasite phylogeny and host historical biogeography. Varestrongylus alces is a valid species, and should be considered distinct from V. capreoli. Phylogenetic relationships among Varestrongylus spp. from Eurasia and North America are complex and consistent with faunal assembly involving recurrent events of geographic expansion, host switching and subsequent speciation. Cervidae, Cryptic species, Historical biogeography, ITS-2, Metastrongyloidea, Parasite biodiversity, Varestrongylinae, Varestrongylus capreoli, Verminous pneumoniapublishedVersio

    Anterolateral Ligament Expert Group consensus paper on the management of internal rotation and instability of the anterior cruciate ligament - deficient knee

    Get PDF
    Purpose of this paper is to provide an overview of the latest research on the anterolateral ligament (ALL) and present the consensus of the ALL Expert Group on the anatomy, radiographic landmarks, biomechanics, clinical and radiographic diagnosis, lesion classification, surgical technique and clinical outcomes. A consensus on controversial subjects surrounding the ALL and anterolateral knee instability has been established based on the opinion of experts, the latest publications on the subject and an exchange of experiences during the ALL Experts Meeting (November 2015, Lyon, France). The ALL is found deep to the iliotibial band. The femoral origin is just posterior and proximal to the lateral epicondyle; the tibial attachment is 21.6 mm posterior to Gerdy's tubercle and 4-10 mm below the tibial joint line. On a lateral radiographic view the femoral origin is located in the postero-inferior quadrant and the tibial attachment is close to the centre of the proximal tibial plateau. Favourable isometry of an ALL reconstruction is seen when the femoral position is proximal and posterior to the lateral epicondyle, with the ALL being tight upon extension and lax upon flexion. The ALL can be visualised on ultrasound, or on T2-weighted coronal MRI scans with proton density fat-suppressed evaluation. The ALL injury is associated with a Segond fracture, and often occurs in conjunction with acute anterior cruciate ligament (ACL) injury. Recognition and repair of the ALL lesions should be considered to improve the control of rotational stability provided by ACL reconstruction. For high-risk patients, a combined ACL and ALL reconstruction improves rotational control and reduces the rate of re-rupture, without increased postoperative complication rates compared to ACL-only reconstruction. In conclusion this paper provides a contemporary consensus on all studied features of the ALL. The findings warrant future research in order to further test these early observations, with the ultimate goal of improving the long-term outcomes of ACL-injured patients. Level of evidence Level V-Expert opinion

    Radiographic landmarks for surgical reconstruction of the anterolateral ligament of the knee

    No full text
    © 2014, Springer-Verlag Berlin Heidelberg. Purpose: To determine the radiographic landmarks of the anterolateral ligament (ALL) on the femur and tibia to assist in intraoperative graft placement during ALL reconstruction. Methods: The footprints of the ALL, fibular collateral ligament (FCL), popliteus insertion, lateral gastrocnemius insertion, and Gerdy’s tubercle were isolated and centrally marked with tantalum beads in thirteen fresh-frozen cadaveric knees. Measurements were taken from the true lateral fluoroscopic images. On the femur, the mean distances from the ALL origin to the FCL origin and from the ALL origin to the popliteus insertion were measured. On the tibia, the mean distances from the ALL insertion to Gerdy’s tubercle and from the ALL insertion to the lateral tibial plateau were measured. Furthermore, radiographic descriptions of the ALL origin and insertion were developed. Results: The ALL origin on the femur averaged 3.3 ± 1.5 mm anterior–distal to the FCL origin in one anatomical variant and 5.4 ± 1.4 mm posterior–proximal to the FCL origin in a second variant. The ALL origin was 9.9 ± 2.7 mm from the popliteus insertion. The ALL origin is described as overlying the posterior femoral cortical line, between Blumensaat’s line and a line from the posterior condylar articular edge parallel to Blumensaat’s line. The ALL insertion on the tibia averaged 24.7 ± 4.5 mm posterior to Gerdy’s tubercle and 11.5 ± 2.9 mm distal to the lateral tibial plateau. The tibial ALL insertion is described between the posterior tibial cortical line and a parallel line drawn down from the apex of the tibial spine, and overlying a line drawn perpendicular to the posterior tibial cortical line starting from the apex of the posterior tibial condyles. Conclusions: Using direct lateral fluoroscopy, radiographic landmarks of the ALL origin and insertion have been described
    corecore