144 research outputs found

    CFD simulation of two tandem floating offshore wind turbines in surge motion

    Get PDF
    High-fidelity unsteady Reynolds-averaged Navier-Stokes (URANS) CFD simulation is employed to investigate the variations in the power performance of two tandem in-line floating offshore horizontal axis wind turbines for the scenario in which the upstream rotor is oscillating in surge motion and the downstream rotor is positioned in a distance of 3D (D: turbine diameter) and is stationary. The rotors are the NREL-5MW reference turbine. The platform surge period and wave amplitude are 9 s and 1.02 m, respectively. The results are presented for 100 full surge periods. It is found that the surge motion of the upstream rotor results in: (i) sinusoidal fluctuations in the power and thrust coefficients (CP and CT) of the upstream rotor with a standard deviation (std) of 9.7% and 5.5%, respectively; (ii) such fluctuations in CP and CT are less regular with a std of 4.2% and 2.8% for the downstream rotor, respectively. A low-frequency oscillating mode with a period nearly 10 times the surge period is also observed for the downstream rotor. The mean Cp and Ct of the downstream rotor are 28.9% and 38.5% of the upstream one.peer-reviewe

    Wake interactions of two tandem floating offshore wind turbines : CFD analysis using actuator disc model

    Get PDF
    Floating offshore wind turbines (FOWTs) have received great attention for deep water wind energy harvesting. So far, research has been focused on a single floating rotor. However, for final deployment of FOWT farms, interactions of multiple FOWTs and potential impacts of the floating motion on power performance and wake of the rotors need to be investigated. In this study, we employ CFD coupled with an Actuator Disc model to analyze interactions of two tandem FOWTs for the scenario, where the upstream rotor is floating with a prescribed surge motion and the downstream rotor is fixed and influenced by the variations in the incoming flow created by the oscillating motion of the surging rotor. We will investigate three different surge amplitudes and analyze the fluctuations in power performance of the two rotors as well as their wake interactions. The results show a light increase in the mean power coefficient of both rotors for the surging case, compared against the case with no surge motion. The standard deviation of the transient CP of the surging rotor linearly scales with the surge amplitude, while such impact for the downstream rotor is very limited. Surging motion of the upstream rotor is found to enhance flow mixing in the wake, which therefore, accelerates the wake recovery of the downstream rotor. This finding suggests prospects for research into redesigning wind farm layout for FOWTs, aiming for more compact arrangements.peer-reviewe

    Identification of variations of angle of attack and lift coefficient for a large horizontal-axis wind turbine

    Get PDF
    The current paper investigates the effects of various elements including turbulence, wind shear, yawed inflow, tower shadow, gravity, mass and aerodynamic imbalances on variations of angle of attack and lift coefficient for a large horizontal-axis wind turbine. It will identify the individual and the aggregate effect of elements on variations of mean value and standard deviation of the angle of attack and lift coefficient in order to distinguish the major contributing factors. The results of the current study is of paramount importance in the design of active load control systems for wind turbine

    A computational framework for the lifetime prediction of vertical-axis wind turbines:CFD simulations and high-cycle fatigue modeling

    Get PDF
    A novel computational framework is presented for the lifetime prediction of vertical-axis wind turbines (VAWTs). The framework uses high-fidelity computational fluid dynamics (CFD) simulations for the accurate determination of the aerodynamic loading on the wind turbine, and includes these loading characteristics in a detailed 3D finite element method (FEM) model to predict fatigue cracking in the structure with a fatigue interface damage model. The fatigue interface damage model allows to simulate high-cycle fatigue cracking processes in the wind turbine in an accurate and robust fashion at manageable computational cost. The FEM analyses show that the blade-strut connection is the most critical structural part for the fatigue life of the VAWT, particularly when it is carried out as an adhesive connection (instead of a welded connection). The sensitivity of the fatigue response of the VAWT to specific static and fatigue modeling parameters and to the presence of a structural flaw is analyzed. Depending on the flaw size and flaw location, the fatigue life of the VAWT can decrease by 25%. Additionally, the decrease of the fatigue resistance of the VAWT appears to be mainly characterized by the monotonic reduction of the tensile strength of the adhesive blade-strut connection, rather than by the reduction of its mode I toughness, such that fatigue cracking develops in a brittle fashion under a relatively small crack opening. It is emphasized that the present computational framework is generic; it can also be applied for analyzing the fatigue performance of other rotating machinery subjected to fluid–structure interaction, such as horizontal-axis wind turbines, steam turbine generators and multistage pumps and compressors

    Towards smart blades for vertical axis wind turbines : different airfoil shapes and tip speed ratios

    Get PDF
    Future wind turbines will benefit from state-of-the-art technologies that allow them to not only operate efficiently in any environmental condition but also maximise the power output and cut the cost of energy production. Smart technology, based on morphing blades, is one of the promising tools that could make this possible. The present study serves as a first step towards designing morphing blades as functions of azimuthal angle and tip speed ratio for vertical axis wind turbines. The focus of this work is on individual and combined quasi-static analysis of three airfoil shape-defining parameters, namely the maximum thickness and its chordwise position as well as the leading-edge radius index I. A total of 126 airfoils are generated for a single-blade H-type Darrieus turbine with a fixed blade and spoke connection point at . The analysis is based on 630 high-fidelity transient 2D computational fluid dynamics (CFD) simulations previously validated with experiments. The results show that with increasing tip speed ratio the optimal maximum thickness decreases from 24 %c (percent of the airfoil chord length in metres) to 10 %c, its chordwise position shifts from 35 %c to 22.5 %c, while the corresponding leading-edge radius index remains at 4.5. The results show an average relative improvement of 0.46 and an average increase of nearly 0.06 in CP for all the values of tip speed ratio.peer-reviewe

    Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine

    Get PDF
    Due to growing interest in wind energy harvesting offshore as well as in the urban environment, vertical axis wind turbines (VAWTs) have recently received renewed interest. Their omni-directional capability makes them a very interesting option for use with the frequently varying wind directions typically encountered in the built environment while their scalability and low installation costs make them highly suitable for offshore wind farms. However, they require further performance optimization to become competitive with horizontal axis wind turbines (HAWTs) as they currently have a lower power coefficient (CP). This can be attributed both to the complexity of the flow around VAWTs and the significantly smaller amount of research they have received. The pitch angle is a potential parameter to enhance the performance of VAWTs. The current study investigates the variations in loads and moments on the turbine as well as the experienced angle of attack, shed vorticity and boundary layer events (leading edge and trailing edge separation, laminar-to-turbulent transition) as a function of pitch angle using Computational Fluid Dynamics (CFD) calculations. Pitch angles of −7° to +3° are investigated using Unsteady Reynolds-Averaged Navier-Stokes (URANS) calculations while turbulence is modeled with the 4-equation transition SST model. The results show that a 6.6% increase in CP can be achieved using a pitch angle of −2° at a tip speed ratio of 4. Additionally, it is found that a change in pitch angle shifts instantaneous loads and moments between upwind and downwind halves of the turbine. The shift in instantaneous moment during the revolution for various pitch angles suggests that dynamic pitching might be a very promising approach for further performance optimization

    Aerodynamic investigation of the start-up process of H-type vertical axis wind turbines using CFD

    Get PDF
    In this study, a CFD start-up model has been built after conducting the sensitivity studies to evaluate the self-starting behaviour of the H-type vertical axis wind turbines (VAWTs). The self-starting behaviour of a well-investigated VAWT is used for the model validation, and then the details of aerodynamics of the start-up process have been examined. Finally, the effect of the moment of inertia and the blade number on the aerodynamic behaviour of the self-starting and power performance of the H-type VAWT are analysed. It has been found that in the critical region, where TSR<1, the contribution of the drag to the torque generation plays a significant role in the second and third quarters of the rotor revolution, where the azimuthal position varies between 100° and 253°. The results also show that increasing the turbine inertia did not show a noticeable effect on the start-up behaviour of the turbine and final rotational speed. However, an increase in the instantaneous turbine power during the start-up process after the optimum TSR is observed with decreasing the turbine inertia. The current findings also show that an increase in the blade number makes the turbine easier to start-up; however, this may reduce the turbine power coefficient

    New System for the Acceleration of the Airflow in Wind Turbines

    Get PDF
    Background: This patent is based on the wind industry technology called Diffuser Augmented Wind Turbines (DAWTs). This technology consists of a horizontal axis wind turbine, which is housed inside a duct with diverging section in the direction of the free air stream. In this paper, a review of preceding patents related to this technology is carried out. Objective: This paper presents an innovative patent to improve the performance of horizontal axis wind turbines. In particular, this system is aimed at improving the performance of those turbines that otherwise might not be installed due to the low wind resource existing at certain locations. Methods: The most innovative elements of this patent are: (1) the semi-spherical grooves, which are mechanized on the surface of the two diffusers in order to guarantee a more energetic boundary layer; (2) the coaxial diffuser, which is located downwind following the first diffuser in order to increase the suction effect on the air mass close to the inlet; (3) the coaxial rings located around the first diffuser outlet, which are used to deflect the external airflow toward the turbine wake; and (4), the selforientating system to orientate the system by the prevailing wind direction. Results: An application of the patent for increasing the power generated by a horizontal axis wind turbine with three blades is presented. The patent is designed and its performance is evaluated by using a Computational Fluid Dynamics code. The numerical results show that this system rises the airflow going through the rotor of the turbine. Conclusion: The patented device is an original contribution aimed at enabling a more profitable installation of wind turbines in places where the wind resource is insufficient because of the wind shear caused both by the proximity of the earth and the obstacles on the earth surface.This work was supported by the OASIS Research Project that was cofinanced by CDTI (Spanish Science and Innovation Ministry) and developed with the Spanish companies: Iridium, OHL Concesiones, Abertis, Sice, Indra, Dragados, OHL, Geocisa, GMV, Asfaltos Augusta, Hidrofersa, Eipsa, PyG, CPS, AEC and Torre de Comares Arquitectos S.L and 16 research centres. The authors also acknowledge the partial funding with FEDER funds under the Research Project FC-15-GRUPIN14-004. Finally, we also thank Swanson Analysis Inc. for the use of ANSYS University Research programs as well as the Workbench simulation environment
    • …
    corecore