224 research outputs found

    Variable Speed Limit Control at SAG Curves Through Connected Vehicles: Implications of Alternative Communications and Sensing Technologies

    Get PDF
    Connected vehicles (CVs) will enable new applications to improve traffic flow. This study’s focus is to investigate how potential implementation of variable speed limit (VSL) through different types of communication and sensing technologies on CVs may improve traffic flow at a sag curve. At sag curves, the gradient changes from negative to positive values which causes a reduction in the roadway capacity and congestion. A VSL algorithm is developed and implemented in a simulation environment for controlling the inflow of vehicles to a sag curve on a freeway to minimize delays and increase throughput. Both vehicle-to-vehicle (V2V) and infrastructure-to-vehicle (I2V) options for CVs are investigated while implementing the VSL control strategy in a simulation environment. Through a feedback control algorithm, the speed of CVs are manipulated in the upstream of the sag curve to avoid the formation of bottlenecks caused by the change in longitudinal driver behavior. A modified version of the intelligent driver model (IDM) is used to simulate driving behavior on the sag curve. Depending on the traffic density at a sag curve, the feedback control algorithm adjusts the approach speeds of CVs so that the throughput of the sag curve is maximized. A meta-heuristic algorithm is employed to determine the critical control parameters. Various market penetration rates for CVs are considered in the simulations for three alternative communications and sensing technologies. It is demonstrated that for higher Market Penetration Rates (MPR) the performance is the same for all three scenarios which means there is no need for infrastructure-based sensing when the MPR is high enough. The results demonstrate that not only the MPR of CVs but also how CVs are distributed in the traffic stream is critical for system performance. While MPR could be high, uneven distribution of CVs and lack of CVs at the critical time periods as congestion is building up may cause a deterioration in system performance

    Deep Reinforcement Learning Approach for Lagrangian Control: Improving Freeway Bottleneck Throughput Via Variable Speed Limit

    Get PDF
    Connected vehicles (CVs) will enable new applications to improve traffic flow. The focus of this dissertation is to investigate how reinforcement learning (RL) control for the variable speed limit (VSL) through CVs can be generalized to improve traffic flow at different freeway bottlenecks. Three different bottlenecks are investigated: A sag curve, where the gradient changes from negative to positive values causes a reduction in the roadway capacity and congestion; a lane reduction, where three lanes merge to two lanes and cause congestion, and finally, an on-ramp, where increase in demand on a multilane freeway causes capacity drop. An RL algorithm is developed and implemented in a simulation environment for controlling a VSL in the upstream to manipulate the inflow of vehicles to the bottleneck on a freeway to minimize delays and increase the throughput. CVs are assumed to receive VSL messages through Infrastructure-to-Vehicle (I2V) communications technologies. Asynchronous Advantage Actor-Critic (A3C) algorithms are developed for each bottleneck to determine optimal VSL policies. Through these RL control algorithms, the speed of CVs are manipulated in the upstream of the bottleneck to avoid or minimize congestion. Various market penetration rates for CVs are considered in the simulations. It is demonstrated that the RL algorithm is able to adapt to stochastic arrivals of CVs and achieve significant improvements even at low market penetration rates of CVs, and the RL algorithm is able to find solution for all three bottlenecks. The results also show that the RL-based solutions outperform feedback-control-based solutions

    Offline reconstruction of missing vehicle trajectory data from 3D LIDAR

    Full text link
    LIDAR has become an important part of many autonomous vehicles with its advantages on distance measurement and obstacle detection. LIDAR produces point clouds which have important information about surrounding environment. In this paper, we collected trajectory data on a two lane urban road using a Velodyne VLP-16 Lidar. Due to dynamic nature of data collection and limited range of the sensor, some of these trajectories have missing points or gaps. In this paper, we propose a novel method for recovery of missing vehicle trajectory data points using microscopic traffic flow models. While short gaps (less than 5 seconds) can be recovered with simple linear regression, and longer gaps are recovered with the proposed method that makes use of car following models calibrated by assigning weights to known points based on proximity to the gaps. Newell's, Pipes, IDM and Gipps' car following models are calibrated and tested with the ground truth trajectory data from LIDAR and NGSIM I-80 dataset. Gipps' calibrated model yielded the best result

    A Comparative Study on Using Meta-Heuristic Algorithms for Road Maintenance Planning: Insights from Field Study in a Developing Country

    Get PDF
    Optimized road maintenance planning seeks for solutions that can minimize the life-cycle cost of a road network and concurrently maximize pavement condition. Aiming at proposing an optimal set of road maintenance solutions, robust meta-heuristic algorithms are used in research. Two main optimization techniques are applied including single-objective and multi-objective optimization. Genetic algorithms (GA), particle swarm optimization (PSO), and combination of genetic algorithm and particle swarm optimization (GAPSO) as single-objective techniques are used, while the non-domination sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization (MOPSO) which are sufficient for solving computationally complex large-size optimization problems as multi-objective techniques are applied and compared. A real case study from the rural transportation network of Iran is employed to illustrate the sufficiency of the optimum algorithm. The formulation of the optimization model is carried out in such a way that a cost-effective maintenance strategy is reached by preserving the performance level of the road network at a desirable level. So, the objective functions are pavement performance maximization and maintenance cost minimization. It is concluded that multi-objective algorithms including non-domination sorting genetic algorithm II (NSGAII) and multi-objective particle swarm optimization performed better than the single objective algorithms due to the capability to balance between both objectives. And between multi-objective algorithms the NSGAII provides the optimum solution for the road maintenance planning. © 2017 The Authors

    Characterization of Respiratory and Cardiac Motion from Electro-Anatomical Mapping Data for Improved Fusion of MRI to Left Ventricular Electrograms

    Get PDF
    Accurate fusion of late gadolinium enhancement magnetic resonance imaging (MRI) and electro-anatomical voltage mapping (EAM) is required to evaluate the potential of MRI to identify the substrate of ventricular tachycardia. However, both datasets are not acquired at the same cardiac phase and EAM data is corrupted with respiratory motion limiting the accuracy of current rigid fusion techniques. Knowledge of cardiac and respiratory motion during EAM is thus required to enhance the fusion process. In this study, we propose a novel approach to characterize both cardiac and respiratory motion from EAM data using the temporal evolution of the 3D catheter location recorded from clinical EAM systems. Cardiac and respiratory motion components are extracted from the recorded catheter location using multi-band filters. Filters are calibrated for each EAM point using estimates of heart rate and respiratory rate. The method was first evaluated in numerical simulations using 3D models of cardiac and respiratory motions of the heart generated from real time MRI data acquired in 5 healthy subjects. An accuracy of 0.6–0.7 mm was found for both cardiac and respiratory motion estimates in numerical simulations. Cardiac and respiratory motions were then characterized in 27 patients who underwent LV mapping for treatment of ventricular tachycardia. Mean maximum amplitude of cardiac and respiratory motion was 10.2±2.7 mm (min = 5.5, max = 16.9) and 8.8±2.3 mm (min = 4.3, max = 14.8), respectively. 3D Cardiac and respiratory motions could be estimated from the recorded catheter location and the method does not rely on additional imaging modality such as X-ray fluoroscopy and can be used in conventional electrophysiology laboratory setting
    • …
    corecore