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ABSTRACT 

DEEP REINFORCEMENT LEARNING APPROACH FOR LAGRANGIAN CONTROL: IMPROVING 

FREEWAY BOTTLENECK THROUGHPUT VIA VARIABLE SPEED LIMIT  
 

Reza Vatani Nezafat 

Old Dominion University, 2019 

Director: Dr. Mecit Cetin 

 

Connected vehicles (CVs) will enable new applications to improve traffic flow. The focus of 

this dissertation is to investigate how reinforcement learning (RL) control for the variable speed 

limit (VSL) through CVs can be generalized to improve traffic flow at different freeway 

bottlenecks. Three different bottlenecks are investigated: A sag curve, where the gradient changes 

from negative to positive values causes a reduction in the roadway capacity and congestion; a lane 

reduction, where three lanes merge to two lanes and cause congestion, and finally, an on-ramp, 

where increase in demand on a multilane freeway causes capacity drop. An RL algorithm is 

developed and implemented in a simulation environment for controlling a VSL in the upstream to 

manipulate the inflow of vehicles to the bottleneck on a freeway to minimize delays and increase 

the throughput. CVs are assumed to receive VSL messages through Infrastructure-to-Vehicle 

(I2V) communications technologies. Asynchronous Advantage Actor-Critic (A3C) algorithms are 

developed for each bottleneck to determine optimal VSL policies. Through these RL control 

algorithms, the speed of CVs are manipulated in the upstream of the bottleneck to avoid or 

minimize congestion. Various market penetration rates for CVs are considered in the simulations. 

It is demonstrated that the RL algorithm is able to adapt to stochastic arrivals of CVs and achieve 

significant improvements even at low market penetration rates of CVs, and the RL algorithm is 

able to find solution for all three bottlenecks. The results also show that the RL-based solutions 

outperform feedback-control-based solutions.  
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CHAPTER 1:  INTRODUCTION AND LITERATURE REVIEW 

All countries allocate millions of dollars every year on transportation systems to mitigate 

congestion and reduce travel delays. Traditionally, expanding the infrastructure to increase the 

capacity seems to be a good idea. However, space, environmental, and economic limitations make 

this solution impossible. Researchers try to come up with more flexible and less costly solutions 

such as dynamic traffic management (DTM). The main objective of DTM is to optimize the 

utilization of the available freeway infrastructure using different types of control measures to 

influence driving behaviors. To do so, they aim to minimize the total travel time of each vehicle 

by maximizing the exit flow (Papageorgiou et al. 2003). Some of the most popular DTM measures 

are ramp metering, variable speed limit, route guidance, reversible lanes, and lane advice systems 

(Hegyi et al. 2009, Wolshon et al. 2006, Papageorgiou et al. 2003, Schakel et al. 2014).  

Recent advancements in the field of artificial intelligence and unprecedented increase in 

information flow through the internet has resulted in the exponential growth of automation. Similar 

to other major industries, transportation is also going through massive changes. Connected and 

automated vehicles (CAV) and connected vehicles (CV) are changing the future of transport with 

strong promises for improving safety and mobility (Coppola et al. 2016). Presence of these 

technologies in the daily traffic stream enables engineers to come up with innovative solutions to 

increase the performance of transportation systems in many ways. The first step is to study how 

existing solutions would operate in the CV environment. For instance, variable message signs 

(VMS) are one of the most practical infrastructural tools in transportation operation. Many studies 

have investigated the implementation of variable speed limit (VSL) algorithms in different 

contexts where speed limits are communicated to the drivers through VMS (Lin et al. 2004; Bertini 
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et al. 2006; Hegyi et al. 2008; Goni Ros et al. 2014b). Recent studies have reported that 

infrastructure-to-vehicle (I2V) communication technologies could be a replacement for the VMS, 

and CVs can serve as the main conduit for information dissemination (Lee et al. 2013b; Vatani 

Nezafat et al. 2018). The wealth of data and information generated by CVs can be used to create 

artificial intelligence solutions too.Therefore, it is essential to study how various types of 

traditional infrastructure-centric traffic flow control methods would operate in an intelligent 

environment. Also, the transition from today’s traffic to a fully connected environment will be 

gradual. Therefore, it is important to come up with solutions for partially connected environments, 

where the traffic is a mixture of regular vehicles and CVs.  

The recent revolutionary progress of deep learning has resulted in a great boost for 

reinforcement learning (RL) as well. RL is one of the subcategories in machine learning, where an 

agent interacts with an environment and learns how to maximize its reward. Over the past few 

years, RL agents have reached a state of art performance in different domains such as playing Atari 

games (Mnih et al. 2015), continuous control (Lillicrap et al. 2015), and they were able to beat 

humans in the board game of Go (Silver et al. 2017). They are also helping autonomous vehicle 

industries for different applications such as improving autonomous driving responses to partially 

observable scenarios (Shalev-Shwartz et al. 2016, Sallab et al. 2017). In transportation, RL has 

attracted many researchers too. There are studies on different domains, and researchers are using 

RL to address DTM in different problems such as signal timing (Bakker et al. 2010, Nagabandi et 

al. 2017), ramp metering (Belletti et al. 2018), lane change decision making (Hoel et al. 2018), 

lane reduction (Vinitsky et al. 2018), and dissipating stop-and-go waves (Kreidieh et al. 2018).   
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Many researchers have tried to overcome the limitations of feedback controllers and online 

optimization through the RL approaches (Davarynejad et al. 2011, El-Tantawy et al. 2010, Zhao 

et al. 2011). Some researchers have investigated the implementation of the RL on VSL in a 

macroscopic simulation environment to increase the exit flow of the system (Zhu et al. 2014, Li et 

al. 2017). This research investigates how VSL through RL control in a CV environment can be a 

generalized solution for different bottlenecks. The controller only manipulates the speed of CVs, 

which are driving in the control section. This is referred to as Lagrangian control. Furthermore, it 

shows that RL will learn to adapt itself with the stochastic arrival of CVs, which will make it a 

perfect choice for partially connected environments. 

1.1) Traffic Dynamics, Modeling, and Control 

Traffic congestions can have a substantial impact on society in terms of travel delays, travel 

time unreliability, fuel consumption, and air pollution (van Wee et al. 2013). Researchers try to 

overcome these problems through DTMs. Hence, it is important to understand the fundamentals 

of traffic flow. Previous studies show a relation between speed and gap distance of vehicles on 

empirical observations (Treiber et al. 2000). Helbing  has pointed out that this relation is dependent 

on driver and vehicle type. Other studies also indicate that an individual driver’s behavior can vary 

based on weather, the geometry of the road, and traffic state (Hoogendoorn et al. 2011, Koshi 

2003, Helbing et al. 2009). These behaviors can be categorized into longitudinal and lateral 

components. The longitudinal behavior determines the vehicle acceleration, and the lateral 

behavior pertains to lane selection and change switching decisions. 

The fundamental relation between traffic flow, density and speed on a lane depends on the 

characteristics of the longitudinal driving behavior. Based on empirical evidence, when the density 

is low, vehicles drive with free-flow speed. They keep up with it until density reaches a certain 
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point (critical density). After this point, an increase in density would result in lower speed, and 

consequently, traffic flow would decrease. Capacity is the maximum flow, which can be reached 

at the critical density. Many studies have described this fundamental relation as a mathematical 

model (Greenshields et al. 1935, Newell 1993).  

In terms of lateral behavior, empirical observations show that drivers choose lanes based 

on preference, traffic condition, and route requirements. The lateral behavior has an important 

impact on the dynamic of the traffic stream, and yet it has not been studied as much as longitudinal 

behavior due to the scarcity of reliable data (Hidas et al. 2004, Brackstone et al. 1996). The 

progress of video processing technology has helped to collect high-quality trajectory data such as 

NGSIM, and it has resulted in the development of better and more sophisticated lateral behavior 

models (Hoogendoorn et al. 2003, Kesting et al. 2007, Schakel et al. 2012). 

Traditionally, capacity is defined when the maximum flow reaches the critical density. 

However, many studies have noted that the capacity of a given location depends on the stochastic 

nature of bottleneck. For instance, researchers have found that formation of the queue at upstream 

of a bottleneck decreases discharge flow significantly (Hall et al. 1991; Tilch et al. 2000). This 

difference, which is shown in Figure 1, is called the capacity drop. Many researchers have 

investigated different types of bottlenecks to understand the magnitude of the capacity drop and 

optimal capacity to decrease the probability of breakdown in microscopic level (Treiber et al. 

2006; Cassidy et al. 2005; Sohrabi et al. 2017). They have found that bottlenecks emerge not only 

at sections with abrupt increases in demand, such as on-ramps, or weaving sections where capacity 

would drop suddenly (Daganzo 1997) but also at basic sections of freeways, including sag curves 

and tunnels where drivers lose alertness and decrease their speed unconsciously (Koshi et al. 

1983).  
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Figure 1 Capacity drop phenomena illustrated on a hypothetical fundamental diagram 

Traffic models can be distinguished based on the level of information they provide into 

different categories such as microscopic, submicroscopic, cellular automata, mesoscopic, and 

macroscopic (Ludmann 1998, Nagel et al. 1992, Jayakrishnan et al. 1994). Microscopic models 

consider each driver-vehicle as the particle in the traffic stream which is dependent of 

characteristics of the driver and the vehicle, their interactions to each other, the geometry of the 

road or environmental conditions such as weather or light. Macroscopic models try to formulate a 

general relationship between fundamental traffic characteristics (density, flow, speed). They are 

all based on vehicle conservation law and flow-density-speed relation. Two main types of these 

models are first-order (Lighthill et al. 1955, Daganzo 1994) and higher-order (Payne 1971, 

Spiliopoulou et al. 2014).  

1.2) Simulation 

The main focus of this thesis is to use the abundance of information provided by CVs and 

create an intelligent environment to control the traffic stream. The stochastic arrival of each CV 
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has an important role in this environment. Therefore, all of the analyses in this thesis are performed 

at the microscopic level.  

1.2.1) Longitudinal Driving Behavior 

There have been many attempts to describe longitudinal driving behavior in a microscopic 

environment (Chandler et al. 1958, Treiber et al. 2000, Bando et al. 1995, Gipps 1981). They all 

formulate the model as an ordinary differential equation, which calculates the behavior of any 

particular vehicle based on the dynamics of the leading vehicle. Models that are more complicated 

use the information of the vehicle(s) proceeding the leading vehicle to consider the multi-

anticipative behavior. In this thesis, one of the most popular and influential microscopic models is 

adopted, which is called Intelligent Driver Model (IDM) to produce normal longitudinal driving 

behavior (Treiber et al. 2000). 

1.2.2) Lateral Driving Behavior 

The lane changing behavior of vehicles in a traffic stream can be considered as a multi-

step process. The driver knows where her destination in the network is, and characteristics such as 

on-ramp, off-ramp, or how other mandatory merges would influence the lane choice (Toledo et al. 

2005). There are many different factors from drivers perspective in lane change decision making, 

such as maintaining desired speed or adapting to the traffic speed (Keyvan-Ekbatani et al. 2016). 

Drivers would perform an advanced acceleration or deceleration behavior to find a sufficient gap 

for a desirable and safe lane change (Gipps 1986). If an accepted gap were not available, drivers 

would indicate their intention of lane changing using turning lights and cooperate with other 

drivers to create a desirable gap (Schakel et al. 2012). In this thesis one of the most recent lane-

changing models that consider all of the specifications above is incorporated which is called Lane 

Changing Model with Relaxation and Synchronization (LMRS) (Schakel et al. 2012). 
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1.2.3) Driving Behavior at Sags 

Sag curves are one of the main reasons for bottlenecks in hilly regions. They are defined 

as a transition section in which slope increases gradually from negative to positive values. They 

can reduce the capacity of the freeway from 10 to 25 percent depending on the magnitude of 

positive slope and length of transition from downhill to uphill  (Okamura et al. 2000). In 2014, 

Xing et al.  noted that up to 60 percent of bottlenecks on Japanese intercity freeways are because 

of sag curves. Previous studies showed that drivers reduce their desired speeds at sags (Furuichi et 

al. 2003; Brilon et al. 2004). In 2012, Yoshizawa et al.  reported that when drivers reach a sag 

curve, they cannot fully compensate for the increase in the slope resulting in poor acceleration 

behaviors. These behaviors are the main reason for speed reduction. However, Laval  put forward 

that when power to mass ratio is considerably large, the reason may be related to insufficient 

acceleration capability of drivers. 

Over the years, researchers have developed microscopic simulation models to imitate the 

characteristics of traffic flow at sags. To develop these car-following models, some researchers 

have assumed the negative effect of gradient on vehicle acceleration. However, this assumption is 

not consistent with empirical data which show that drivers regain their normal driving behavior 

after passing vertical curves (Koshi et al. 1992; Komada et al. 2009). To overcome this drawback, 

other studies have used compensation for the limiting effect, which increase in gradient has on 

vehicle acceleration (Yokota 1998; Oguchi et al. 2009). Researchers can reproduce the 

longitudinal driving behavior and traffic dynamics at sag curves accurately. The location of the 

bottleneck in these models is at the bottom of the curve. However, the empirical data shows that 

the bottleneck should be located at the end of the curve (Brilon et al. 2004; Patire et al. 2011). 

More recently, in 2012, Goni Ros et al.  used IDM as the base car-following model (Treiber et al. 

2000). They have introduced another term in the acceleration equation to incorporate the effect of 



8 

 

compensation for driving behavior on sags. The developed model can capture the effect of 

compensation on a vertical curve and illustrates drivers being able to regain normal behavior once 

the driver leaves the curve. It also produces the location of the bottleneck at the end of the curve 

and beginning of uphill which is consistent with empirical observations. They have assumed 

drivers would compensate the gradient linearly along with the sags in the direction of uphill. 

1.3) Connected Vehicles 

Connected and autonomous vehicles are reshaping the future of transportation. Sharing 

data locally with other vehicles or roadside infrastructures helps researchers to come up with new 

solutions to optimize efficiency (Milanés et al. 2014; Goodall et al. 2013) and increase the safety 

of transportation networks (Olia et al. 2016). In a study by Talebpour et al. , the possibility of 

shockwave detection through CVs in a microsimulation model have been investigated. Some 

researchers have used CVs equipped with a speed advisory system to minimize idling at signals 

(Malenstein 1998; Rakha et al. 2011). More recently, Ramezani et al.  developed an optimization 

program using CV’s environment to determine advisory speeds for connected vehicles in work 

zones. The CVs program of the USDOT is one of the relatively new technologies that allow 

vehicles to link directly to its surrounding environment. This technology provides communication 

between vehicles that are close together, and between vehicles and the nearby infrastructure on the 

road. The goal of these interactions is to increase the safety, efficiency, and the mobility of the 

transportation network. Therefore, the Institute of Electrical and Electronics Engineers (IEEE) has 

proposed a modified version of the Wireless Local Area Network (WLAN) protocol for V2V and 

I2V communications which is called Dedicated Short-Range Communication (DSRC). The FCC 

has allocated a dedicated bandwidth of 75MHz in the 5.850 to 5.925GHz band for the DSRC. The 

maximal communication distance is around 300 meters (Xu et al. 2017). Some automakers are 

already installing DSRC devices in their new vehicles that allow the V2Vand I2V communication 
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to increase safety (Lukin et al. 2006). Despite all of the advantages, it lacks scalability, which 

means in dense traffic, the protocol is not reliable to provide time-probabilistic characteristics (Lee 

et al. 2013a). An alternative option to DSRC is the 5G-LTE that is a new, under development, 

cellular wireless infrastructure. It has the potential to be redesigned as a communication basis for 

CVs. It offers low latency and high throughputs, but it increases bandwidth demands and needs 

for real-time critical services (Bailo et al. 2018).   

1.4) Dynamic Traffic Management via Variable Speed Limit 

The VSL is a flexible speed restriction on a given length of the road. The speed limit 

changes according to the current traffic state or environmental conditions. Many control strategies 

have been proposed for the operation of VSL (Chen et al. 2015, Liu et al. 2015, Carlson et al. 

2010). Some researchers use online optimization (Hegyi et al. 2005; Kwon et al. 2007; Zegeye et 

al. 2012; Pasquale et al. 2016). They formulate a VSL on a freeway a constrained discrete-time 

optimal control problem, which can be solved by open-loop optimal control. This approach can 

theoretically reach optimum system performance. However, an accurate prediction of traffic flow 

is necessary for the open-loop optimal solution. Such models need a huge amount of computation. 

Hence, it is hard to make it practical for large-scale applications. Others use the feedback control 

approach (Popov et al. 2008; Carlson et al. 2011; Iordanidou et al. 2017). In this approach, the 

control strategy maximizes flow by automatically adjusting the speed limits to keep the controlled 

variable, i.e., bottleneck density, to be as close as possible to the desired target value. Since this 

model relies on real-time measurements of traffic conditions, and it does not need predictions, the 

VSL strategy is more efficient and robust to actual traffic conditions. However, they are unable to 

take actions unless an oscillation in the controlled variable is observed. As a consequence of being 

reactive to observed changes, there would be a delay between the oscillation in the traffic stream 



10 

 

and the response of the controller. This can create drastic changes in VSL when there is large 

variation in traffic demand (Aström et al. 2010). 

1.5) Deep Reinforcement Learning  

Reinforcement learning (RL) is one of the major sub-disciplines in machine learning 

alongside with supervised and unsupervised learning. The main aim of RL is to understand how 

an agent can learn to take actions in an environment to maximize its cumulative reward. The 

environment can be formulated as a Markov Decision Process (MDP). The agent takes actions 

based on the current state of the environment. For each action that agent takes, the environment 

responds back with the new state and a reward signal. The reward signal has a key role in the 

learning process of the agent. Generally, the reward signal is presented by a simple scalar, which 

is the only way the agent evaluates its actions. Traditionally, when the environment has a small 

state space, and its stochastic nature is simple, dynamic programming approaches can be used to 

solve the problem. However, for more complex environments, it’s not feasible.  

Therefore, one of the alternatives is to utilize Q-Learning. The main idea is to memorize 

optimal action in every state through trial and error. This approach also becomes infeasible due to 

the expansion of state space. To overcome this drawback, instead of storing Q values for all 

possible states-actions combination, we can build a Q function estimator to approximate the value.  

One of the best available function estimator approaches is the Artificial Neural Network (ANN) 

which can build nonlinear models for complex environments (Sutton et al. 1998). 

The ANN idea has been around since 1960. There have been many studies using ANN as 

a machine learning approach in all engineering fields, including transportation community (Faghri 

et al. 1992). The advantage of ANN over classical machine learning approaches such as SVM is 

the ability of this method to perform feature extraction and selection automatically. To get the best 
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performance out of classical methods, researchers need to select the best features to represent the 

data, which is time-consuming and involves some heuristic procedures. In a sense, for classical 

methods, some part of the learning has to be done by the researcher. Up to a few years ago, the 

performance of ANNs and classical methods were almost the same. With the recent advancements 

in computational power and an increase in the accumulation of data, researchers have noticed an 

interesting pattern in the performance of machine learning algorithms. The performance of ANNs 

increases rapidly, with more data, while the performance of classical methods would not get better 

after a certain point. This observation has led to a significant increase in new studies about ANNs 

in the field of computer science. For some tasks, such as image retrieval (Ku et al. 2015), object 

detection, and tracking (Girshick 2015, Ren et al. 2015) ANN has reached a state of the art 

performance, exceeding the performance of competing methods. The detailed incorporation of RL 

and ANN is explained later on in the methodology section of this study. 

1.6) Research objective and research questions 

The main objective of this thesis is to develop new concepts for DTM at freeway 

bottlenecks and to create more general solutions using artificial intelligence and rich information 

of the CV environment. To achieve this objective, this thesis proposes to answer the following 

research questions: 

1. Given a CV environment, can we develop VSL control algorithms that are robust and 

applicable to multiple types of freeway bottlenecks? In particular, how can RL methods be 

leveraged and designed to improve throughput at these bottlenecks through VSL control? 

2. How effective are these VSL algorithms, and to what extent will they mitigate congestion? 
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3. In what aspects the RL control strategies and outcomes differ from those of feedback 

control methods? 

4. How effective will these algorithms perform under varying market penetration of CVs?  

5. Is the RL algorithm able to adapt its controlling strategy to different market penetration of 

CVs 

1.7) Research approach and research scope 

Microscopic traffic simulation models have been developed for three types of bottlenecks. 

These include an on-ramp, lane reduction, and a sag curve, as shown in Figure 2, Figure 3, and 

Figure 4. The simulation models were integrated with RL algorithms to answer the research 

questions above. Different approaches to RL has been investigated to find the optimal solution for 

each bottleneck. Also, a feedback-based controller was developed to be compared with the RL 

controller and answer the third question. Finally, extensive sensitivity analyses have been 

conducted to understand the impacts of the penetration rate of CVs on system performance. 

 

Figure 2 In-ramp bottleneck 
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Figure 3 Lane reduction bottleneck 

 

Figure 4 Sag curve bottleneck 

The focus of this research is on freeways, where traffic flows in one direction. The reason 

is to have a complete understanding of the impact of RL control measures on isolated bottlenecks, 

which are common in freeway networks. In contrary, in urban areas, traffic flow usually breaks 

down as a result of multiple types of bottlenecks such as intersections. It is crucial noting that the 

control strategy developed in this thesis could be extended to more complex networks with 

multiple bottlenecks. 

This thesis investigates traffic management strategy using RL in a CV environment for the 

on-ramp, sag curve, and lane reduction, which are common types of bottlenecks on freeways. The 

thesis focuses on minimizing the total delay. Moreover, the thesis investigates the impact of the 
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penetration rate of CVs on the performance of the management strategy. It is considered that the 

demand profile is given. Other objectives, such as safety, environmental impacts, maintenance, 

implementation, and road design, are beyond the scope of this study. 

1.8) Main contributions 

Main contributions of this research are listed as follows: 

1. Guidelines for developing DTM measures through the RL algorithm. The thesis develops 

an RL controller for VSL that is adaptive to the stochastic arrival of CVs.  

2. The thesis demonstrates how to generalize the RL controller for VSL to mitigate congestion 

at different freeway bottlenecks. The method will be generalizable in the sense that one 

controller can learn to optimize the traffic exit-flow of various bottlenecks. The proposed 

method can be used to develop new DTM concepts. 

3. An extensive sensitivity analysis has been conducted to demonstrate the impact of the 

penetration rate of CVs on the performance of the RL controller.  

1.9) Outline of the dissertation 

The remainder of this thesis describes all models and details to demonstrate how the 

simulation environment and RL controller are developed (Chapter 2). Results and performance of 

the RL approach for different bottlenecks and different penetration rates are presented in Chapter 

3, and finally, Chapter 4 presents the conclusions of the thesis and summarizes the main findings. 

It discusses the meanings of results and potential future works.   
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CHAPTER 2:  METHODOLOGY 

2.1) Longitudinal Driving Behavior 

To perform the analyses, a micro-simulation model is developed in Python for a freeway 

segment which takes into account vertical curves on the road. Therefore, the longitudinal driving 

behavior is one of the critical components of this simulation model. In this study, the model Goni 

Ros et al.  proposed is used. This model can produce normal driving behavior on a basic section 

of a freeway. It also accounts for the influence of vertical curves on vehicle acceleration. It 

calculates acceleration from the summation of two terms, as presented in Equation 1. The first 

component corresponds to car-following behavior, which is a modified version of IDM (Treiber 

et al. 2000) and the second one calculates behavior on uphill. 

𝜈′ = 𝑓𝑟(𝑡) + 𝑓𝑔(𝑡)  (1) 

The first acceleration term uses speed (𝜈), relative speed (∆𝜈), the desired speed (𝜈𝑑𝑒𝑠), 

and spacing to the vehicle ahead (𝑠) to calculate acceleration for the following car.  

𝑓𝑟(𝑡) = 𝛼 × 𝑚𝑖𝑛 [1 − (
𝜈(𝑡)

𝜈𝑑𝑒𝑠
)
4

, 1 − (
𝑠𝑑𝑒𝑠(𝜈(𝑡), 𝛥𝜈(𝑡))

𝑠(𝑡)
)

2

] 
(2) 

In Equation 2, 𝑠𝑑𝑒𝑠 is the desired spacing which is computed using Equation 3. The main 

influencing factor is the safe gap to the lead vehicle. 

𝑠𝑑𝑒𝑠(𝜈(𝑡), 𝛥𝜈(𝑡)) = 𝑠0 + 𝜈(𝑡). 𝜏(𝜈(𝑡)) +
𝜈(𝑡).Δ𝜈(𝑡)

2√𝛼. 𝑏
 

(3) 

The parameter 𝛼 is the maximum acceleration, 𝑏 is the maximum comfortable 

deceleration, 𝑠0 is the gap in the standstill situation, and 𝜏 is the safe time headway as a function 

of speed. Based on the traffic state, the safe time headway (𝜏) changes, as shown in Equation 4. 
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     𝜏(𝜈(𝑡)) = {
𝜏𝑓 𝜈(𝑡) ≥ 𝜈𝑐𝑟𝑖𝑡
𝛾. 𝜏𝑓 𝜈(𝑡) < 𝜈𝑐𝑟𝑖𝑡

 
  (4) 

The second term (𝑓𝑔(𝑡)) in Equation 1 captures the influence of gradient on vehicle 

acceleration. This influence is equal to the difference between the gradient at the position of the 

vehicle (𝐺(𝑥(𝑡))) and the compensated gradient by the driver at the time (𝐺𝑐(𝑡)) multiplied by 

gravity acceleration. This is shown in Equation 5. 

𝑓𝑔(𝑡) = −𝑔(𝐺(𝑥(𝑡)) − 𝐺𝑐(𝑡))   (5) 

It is assumed that drivers would compensate linearly for any increase in freeway gradient 

with maximum gradient compensation rate defined by parameter 𝑐. 

     𝐺𝑐(𝑡) = {
𝐺(𝑥(𝑡)) 𝐺(𝑥(𝑡)) ≤ 𝐺(𝑡𝑐) + 𝑐(𝑡 − 𝑡𝑐)

𝐺(𝑡𝑐) + 𝑐(𝑡 − 𝑡𝑐)              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

     (6) 

Where: 

𝑡𝑐 = 𝑚𝑎𝑥[𝑡|𝐺𝑐(𝑡) = 𝐺(𝑥(𝑡))] (7) 

If the increase in grade over time is lower than 𝑐, then 𝐺𝑐(𝑡) is equal to  𝐺(𝑥(𝑡)) and 

 𝑓𝑔(𝑡) is zero. Hence, the acceleration of the vehicle is not affected, and the driver fully 

compensates for the gradient. On a basic section of the freeway where there is no vertical curve, 

the second term of Equation 1 would be zero, and the model produces normal driving behavior.  

2.2) Lateral Driving Behavior 

The LMRS algorithm assumes that the lane-changing behavior depends on the level of 

desire the driver has. It’s a single value derived from a combination of incentive to follow the route 

(𝑑𝑟), gain speed (𝑑𝑠) and keep right (𝑑𝑏). The desire to change from lane 𝑖 to lane 𝑗 is calculated 

using Equation 8.  

𝑑𝑖𝑗 = 𝑑𝑟
𝑖𝑗
+ 𝜃𝑣

𝑖𝑗
. (𝑑𝑠

𝑖𝑗
+ 𝑑𝑏

𝑖𝑗
) (8) 
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The 𝑑𝑟
𝑖𝑗

 is the incentive to follow the road. The 𝑑𝑠
𝑖𝑗
 is the speed incentive. The 𝑑𝑏

𝑖𝑗
 is the 

incentive to keep right and the 𝜃𝑣
𝑖𝑗

 is a factor to incorporate discretionary incentives. The desire is 

an ordinal value between -1 to 1 and depending on the range; it falls the lane changing behavior 

changes. Negative values of desire mean lane changing is not desired. As it is shown in Figure 5, 

there are four regions for lane changing. The first region is where no lane changing happens. The 

second region is called free lane changing, which means if its possible, lane changes are initiated 

without any preparation. The third region is the synchronization area. The vehicle starts 

synchronizing its speed with the target lane. This goal can be achieved by following the leading 

vehicle on that lane. If still, the driver was not able to find an applicable gap to perform lane 

changing the desired value will pass 𝑑𝑐𝑜𝑜𝑝 threshold and the vehicle starts cooperative behavior. 

Using turn indicator, other vehicles will know the lane changing intention, and the potential 

follower starts creating a gap by following the potential lane changer. 

 

2.2.1) Lane Change Incentives 

As we discussed before the desire to change lane depend on different incentives. The speed 

incentive (𝑑𝑠
𝑖𝑗

) represent driver’s anticipation for speed of vehicles in downstream of the lane. The 

Figure 5 Overview of the spectrum of desire and lane changing regions 
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anticipation speed (𝑣𝑎𝑛𝑡) is a function of  speed limit (𝑣𝑙𝑖𝑚), maximum vehicle speed (𝑣𝑚𝑎𝑥) and 

the speed of potential leading vehicle (𝑣𝑙𝑒𝑎𝑑) on the target lane. Using 𝑣𝑙𝑖𝑚 and 𝑣𝑚𝑎𝑥 the desired 

speed at lane 𝑘 is calculated through Equation 9. The 𝛿 represent the level of adherence to the 

speed limit. If it’s over one, it results in speeding, and if it’s less than one, it results in the opposite. 

𝑣𝑑𝑒𝑠
𝑘 = min (𝛿. 𝑣𝑙𝑖𝑚

𝑘 , 𝑣𝑚𝑎𝑥) 

 

(9) 

The speed anticipation of leading vehicle (𝑣𝑙𝑒𝑎𝑑) is calculated as Equation 10. It also 

depends on how far the leading vehicle is. The 𝑠 is the current distance headway and 𝑥0 shows to 

what distance are we considering a leading vehicle in out anticipation. 

𝑣̃𝑙𝑒𝑎𝑑 = [1 −
𝑠

𝑥0
] . 𝑣𝑙𝑒𝑎𝑑 +

𝑠

𝑥0
. 𝑣𝑑𝑒𝑠 

 

(10) 

Finally, the anticipated speed for lane 𝑘 is calculated using Equation 11. All vehicles on 

subset m are considered as the leading vehicle. Subset m includes all vehicles on lane k and all 

vehicles which want to be on lane 𝑘 ( 𝑑𝑘−1,𝑘 𝑜𝑟 𝑑𝑘+1,𝑘  ≥ 𝑑𝑐𝑜𝑜𝑝). However, vehicles who wants 

to leave lane 𝑘 (𝑑𝑘,𝑗  ≥ 𝑑𝑐𝑜𝑜𝑝) are excluded. 

𝑣𝑎𝑛𝑡
𝑘 = min (𝑣𝑑𝑒𝑠

𝑘 , 𝑚𝑖𝑛(𝑣̃𝑚𝑙𝑒𝑎𝑑)) 

 

(11) 

Using the anticipated speed, the speed incentive can be calculated through Equation 13 & 

14, respectively, for left and right lane change. Since we now desire to change lane decrease during 

acceleration, the  𝛼𝑔𝑎𝑖𝑛 is derived from Equation 12 as a reduction factor for the speed incentive. 

The ∆𝑠 indicates if the lane change is allowed (∆𝑠= 1). 

𝛼𝑔𝑎𝑖𝑛 =
𝛼−𝑚𝑎𝑥 (𝑣̇, 0)

𝛼
 

 

(12) 
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𝑑𝑠
𝑖,𝑖−1 = {

𝛼𝑔𝑎𝑖𝑛
𝑣𝑎𝑛𝑡
𝑖−1 − 𝑣𝑎𝑛𝑡

𝑖

𝑣𝑔𝑎𝑖𝑛
∆𝑠
𝑖,𝑖−1= 1

0                              ∆𝑠
𝑖,𝑖−1= 0

 

 

(13) 

 

𝑑𝑠
𝑖,𝑖+1 =

{
 
 

 
 𝛼𝑔𝑎𝑖𝑛

min (𝑣𝑎𝑛𝑡
𝑖−1 − 𝑣𝑎𝑛𝑡

𝑖 , 0)

𝑣𝑔𝑎𝑖𝑛
∆𝑠
𝑖,𝑖+1= 1 𝑎𝑛𝑑 𝑣𝑎𝑛𝑡

𝑖 > 𝑣𝑐𝑟𝑖𝑡

𝛼𝑔𝑎𝑖𝑛
𝑣𝑎𝑛𝑡
𝑖−1 − 𝑣𝑎𝑛𝑡

𝑖

𝑣𝑔𝑎𝑖𝑛
∆𝑠
𝑖,𝑖+1= 1 𝑎𝑛𝑑 𝑣𝑎𝑛𝑡

𝑖 ≤ 𝑣𝑐𝑟𝑖𝑡

0 ∆𝑠
𝑖,𝑖+1= 0

 

 

(14) 

To calculate route incentive, first the desire to leave route 𝑘 is calculated through Equation 

15. The 𝑥𝑟
𝑘 is the remaining distance on route 𝑘, 𝑡𝑟

𝑘 =
𝑥𝑟
𝑘

𝑣⁄  is the remaining time with current 

speed and the 𝑛𝑟
𝑘 is several required lane changes. Then the route incentive is calculated using 

Equation 16. The ∆𝑟
𝑗
= 1 indicates that route j can still be followed. 

 

𝑑𝑟
𝑘 = max (1 −

𝑥𝑟
𝑘

𝑛𝑟
𝑘. 𝑥0

, 1 −
𝑡𝑟
𝑘

𝑛𝑟
𝑘. 𝑡0

, 0) 

 

(15) 

 

𝑑𝑟
𝑖𝑗
=

{
 
 

 
 𝑑𝑟

𝑖        ∆𝑟
𝑗
= 1 𝑎𝑛𝑑 𝑑𝑟

𝑖 > 𝑑𝑟
𝑗

0          ∆𝑟
𝑗
= 1 𝑎𝑛𝑑 𝑑𝑟

𝑖 = 𝑑𝑟
𝑗

−𝑑𝑟
𝑗

   ∆𝑟
𝑗
= 1 𝑎𝑛𝑑 𝑑𝑟

𝑖 < 𝑑𝑟
𝑗

−∞                          ∆𝑟
𝑗
= 0

 

(16) 

The keep right incentive is a constant bias towards the right lane in accordance to “keep 

right if possible” rule. This incentive is calculated through Equation 17.   
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𝑑𝑏
𝑖,𝑖−1 = 0                                                                 

𝑑𝑏
𝑖,𝑖+1 = {𝑑𝑓𝑟𝑒𝑒 𝑣𝑎𝑛𝑡

𝑖+1 = 𝑣𝑑𝑒𝑠 𝑎𝑛𝑑 𝑑𝑟
𝑖,𝑖+1 ≥ 0

0                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(17) 

 

If a mandatory lane change is urgent, voluntary lane change incentives will be ignored 

through 𝜃𝑣
𝑖𝑗

 which is calculated using Equation 18. 

 

𝜃𝑣
𝑖𝑗
=

{
 
 

 
 0 𝑑𝑟

𝑖𝑗
. 𝑑𝑣
𝑖𝑗
< 0 𝑎𝑛𝑑 |𝑑𝑟

𝑖𝑗
| ≥ 𝑑𝑐𝑜𝑜𝑝

𝑑𝑐𝑜𝑜𝑝 − |𝑑𝑟
𝑖𝑗
|

𝑑𝑐𝑜𝑜𝑝 − 𝑑𝑠𝑦𝑛𝑐
𝑑𝑟
𝑖𝑗
. 𝑑𝑣
𝑖𝑗
< 0 𝑎𝑛𝑑 𝑑𝑠𝑦𝑛𝑐 < |𝑑𝑟

𝑖𝑗
| < 𝑑𝑐𝑜𝑜𝑝

1 𝑑𝑟
𝑖𝑗
. 𝑑𝑣
𝑖𝑗
≥ 0 𝑜𝑟 |𝑑𝑟

𝑖𝑗
| ≤ 𝑑𝑠𝑦𝑛𝑐

 

 

(18) 

 

2.2.2) Gap Acceptance and Relaxation 

If the desire to change lane is high enough (𝑑𝑖𝑗  ≥ 𝑑𝑓𝑟𝑒𝑒). The vehicle will look for an 

acceptable gap to perform the lane change. The gap is accepted if both lane changer (𝑐) and a new 

follower (𝑓) have acceleration higher than a safe deceleration threshold as it is shown in Equation 

19. 

𝑣̇𝑔 ≥ −𝑏𝑐 . 𝑑𝑖𝑗,𝑐       𝑔 ∈ {𝑐, 𝑓}      
 

(19) 

Since vehicles tend to accept shorter headways for lane changing, Equation 20 updates 

acceptable headway used in Equation 3 for both lane changer and new follower. The 〈𝑑𝑖𝑗,𝑐〉 means 

that desire is bounded between zero and one. Then the acceptable headway of the vehicle will go 

back to its value over time through Equation 21. This is called relaxation, and it is assumed that 

the relaxation of headway is exponential with relaxation time 𝜏. 
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𝑇𝑔(𝑑𝑖𝑗,𝑐) = 𝑚𝑖𝑛(𝑇𝑔(𝑑𝑖𝑗,𝑐), 〈𝑑𝑖𝑗,𝑐〉. 𝑇𝑚𝑖𝑛
𝑔

+ (1 − 〈𝑑𝑖𝑗,𝑐〉). 𝑇𝑚𝑎𝑥
𝑔

) 

 

(20) 

 

𝑇(𝑡) = 𝑇(𝑡 − ∆𝑡) + {𝑇𝑚𝑎𝑥 − 𝑇(𝑡 − ∆𝑡)}
∆𝑡

𝜏
 

 

(21) 

 

2.2.3) Synchronization and Gap Creation  

When the desire to change lane is higher than the synchronization threshold, the vehicle 

starts synchronizing its speed with the leader on the target lane. Using the car-following model, 

the new acceleration is calculated, which has to comply with Equation 22. The maximum 

deceleration of b is the upper bound of synchronization acceleration, which is both comfortable 

and safe. 

𝑣̇𝑠𝑦𝑛𝑐
𝑖𝑗

> −𝑏 

 

(22) 

If the desire passes the cooperation threshold, the vehicle informs adjacent follower by turn 

light, and the new follower will create a gap by following the lane changer constrained by Equation 

22. Again, the maximum deceleration of b is the upper bound of cooperation acceleration.  

2.3) Control Strategy 

The objective of the control strategy is to eliminate congestion in a bottleneck and improve 

the performance of highways. For networks not influenced by other control measures, minimizing 

the total time that vehicles spend in the system is equivalent to maximizing the exit flow 

(Papageorgiou et al. 2003).  As mentioned previously, the capacity of the freeway on a bottleneck 

(𝑞𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘) is less than other sections (𝑞𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦). Therefore, the network’s exit flow is bound by 

the capacity of the bottleneck. 
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     𝑞𝐸𝑥𝑖𝑡 ≈ 𝑞𝑏𝑜𝑡𝑡𝑙𝑒𝑛𝑒𝑐𝑘 < 𝑞𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦                                   (23) 

One way to maximize the exit flow is to prevent traffic from becoming congested at the 

bottleneck. Keeping the traffic state uncongested at the bottleneck is possible if the inflow of it 

gets regulated at a controlled section at the upstream. The inflow of bottleneck is approximately 

equal to the outflow of the control section, and per the fundamental relation between speed and 

flow, changing speed on control section changes the inflow of the bottleneck. By dynamically 

modifying the speed at control section, it is possible to keep the inflow to the bottleneck slightly 

below its free flow capacity. It will increase the time-weighted sum of the exit flow. When the 

demand in the upstream is large enough, the congestion would not be prevented entirely. As a 

result, the control section and upstream would become congested instead of the bottleneck, but the 

outflow from the controlled part will be higher than the queue discharge capacity of the bottleneck.  

2.3.1) Deep Reinforcement Learning 

The RL algorithm learns from observations to maximize the reward of an agent by 

interacting with an environment through possible actions. The action space can be discrete or 

continuous, and it is taken from a range of actions called 𝐴. At time 𝑡, the action is represented by 

𝑎𝑡, the state as 𝑠𝑡, and the reward as 𝑟𝑡. The main goal of the agent is to learn a policy that 

maximizes the expectation of future rewards. This policy is represented by 𝜋(𝑎|𝑠) which calculates 

the probability of taking action 𝑎 given the state 𝑠. The impact of future rewards is represented by 

a function called return, which is calculated as in Equation 24. The parameter 𝛾 is called discount 

factor which takes into account the importance of future rewards. It is usually considered to be a 

constant number between 0.8 to 0.99. 

𝑅𝑡 =∑𝑟𝑡 + 𝛾𝑟𝑡+1 +⋯+ 𝛾𝑇−𝑡𝑟𝑇−𝑡

𝑇

𝑡

 

                                  (24) 
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One way to estimate our target 𝜋(𝑎|𝑠) is to estimate the value functions of the policy. There are 

two different value functions, as they are shown in Equations 25 & 26. One is the state-value 

function, which calculates the expected return of being in state 𝑠, and the other one is action-value 

function. Similarly, it calculates the expected return of taking action 𝑎 in state s.  

𝑉𝜋(𝑠𝑡) = 𝐸[𝑅𝑡|𝑠𝑡]                                   (25) 

𝑄𝜋(𝑠𝑡, 𝑎𝑡) = 𝐸[𝑅𝑡|𝑠𝑡, 𝑎𝑡]                                   (26) 

The best policy has the optimal action-value function which is represented by 𝑄∗(𝑆𝑡, 𝑎𝑡). By using 

this function one can simply choose 𝑎∗ = 𝑚𝑎𝑥𝑎∈𝐴𝑄
∗(𝑠, 𝑎) at every state and solve the problem. 

If the environment has a finite discrete state and finite discrete action space, it would be easy to 

represent Q-values in a table such as the one shown in Figure 6. Value-based methods such as 

tabular Q-learning try to estimate the Q-value function through Equation 27 and 28, which is 

known as Bellman equation (Sutton et al. 1998). It is self-evident that an increase in state and 

action space dimensions makes it impossible to approximate Q-value function through a table. 

 

Figure 6 Q-values table example 

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) + 𝛼[𝑦𝑡 − 𝑄𝑡(𝑠, 𝑎)]                                 (27) 

𝑦𝑡 = 𝑟𝑡 + 𝛾max
𝑎𝑡+1

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡+1)]                                 (28) 

By leveraging deep neural networks, instead of estimating individual Q-values for each state-

action pair, we can approximate a function that maps from states to Q-values of different actions. 

This approach is called Deep Q-Network (DQN) (Mnih et al. 2015). Since deep neural networks 
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fluctuate a lot in the process of training, the agent will end up chasing a moving target, and it may 

never converge. Therefore, Mnih et al. came up with the idea of using two separate neural networks 

for the Q-value estimation, as illustrated in Figure 7. A value network that estimates Q-value of 

state-action pairs and a target network which is used to estimate max
𝑎𝑡+1

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡+1) and help the 

calculation of 𝑦𝑡 in Equation 28. The target network will be frozen and get updated only after a 

period of time which makes the targets partially stabilized.  

 

Figure 7 Q-Network (left) used to calculate Equation 27, and the Target-Network (right) is used 

to calculate Equation 28 

An alternative approach to the value-based method is a policy-based method, where an 

agent will directly find the best policy instead of value functions (Sutton et al. 2018). One of the 

policy-based methods is called Reinforce (Williams 1992). The algorithm updates parameters in a 

way that the probability of actions that resulted in higher returns would increase. It approximates 

the best policy with the function 𝜋(𝑎|𝑠; 𝜃) and updates parameters with Equation 29. Since the 

cumulative reward is needed, this algorithm only updates at the end of each episode. 

𝜃𝑡+1 = 𝜃𝑡 + 𝛼. 𝑅𝑡
𝜕𝑙𝑜𝑔𝜋(𝑎|𝑠; 𝜃)

𝜕𝜃
 

                                (29) 
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There are hybrid methods combining value-based and policy-based methods. These are called 

actor-critic methods. These methods optimize the policy (𝑎𝑐𝑡𝑜𝑟, 𝜋(𝑎|𝑠; 𝜃𝜋)) directly but they also 

estimate the value function (𝑐𝑟𝑖𝑡𝑖𝑐, 𝜈(𝑠𝑡; 𝜃
𝜈)) to reduce the variance of updates (Sutton et al. 

2018). They also allow bootstrapping, which means there is no need to wait for the end of an 

episode to update parameters. Instead of using return function (𝑅𝑡) they use Advantage (𝐴𝑏) as it 

is shown in Equation 30. The parameter 𝑏 is called bootstrapping interval. 

𝐴𝑏 = 𝑟𝑡 + 𝛾𝑟𝑡+1 +⋯+ 𝛾
𝑏−𝑡𝑟𝑡+𝑏−1 + 𝜈(𝑠𝑡+𝑏; 𝜃

𝜈) − 𝜈(𝑠𝑡; 𝜃
𝜈)         (30) 

The parameters of the actor and critic models can be updated by Equation 29. These updates for 

actor 𝜋(𝑎|𝑠; 𝜃𝜋) and critic 𝜈(𝑠𝑡; 𝜃
𝜈) are shown in Equations 31 & 32. 

𝜃𝑡+1
𝜋 = 𝜃𝑡

𝜋 + 𝛼𝜋. 𝐴𝑏
𝜕𝑙𝑜𝑔𝜋(𝑎|𝑠; 𝜃𝜋)

𝜕𝜃𝜋
 

                                (31) 

𝜃𝑡+1
𝜈 = 𝜃𝑡

𝜈 + 𝛼𝜈 . 𝐴𝑏
𝜕𝑣(𝑠; 𝜃𝑣)

𝜕𝜃𝜈
 

                                (32) 

Since the process is sequential, the experiences that the agent collects are highly correlated, 

which is a big issue for a deep neural network to approximate a function from correlated data. One 

way to break this correlation is experience replay (Mnih et al. 2015). In this approach, the agent 

will not update the network with immediate experience. Instead, it will store tuples of 

[𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1] in a buffer and updates its network using a random sample. This approach costs 

memory and it forces using old experiences. Another solution is to have asynchronous agents 

(Mnih et al. 2016), which is adopted in this study. 

For the training of the algorithm, the multi-threading ability of Python has been used to 

compute the interaction of agents and environments in parallel. The parallel computation through 

multi-threading can be implemented as a synchronous procedure which is called Advantage Actor-

Critic (A2C) or as an asynchronous procedure, which then will be called Asynchronous Advantage 



26 

 

Actor-Critic (A3C). For the synchronous implementation (Figure 8 left), when all workers (agents) 

are done, their experiences would be collected and passed to the global network. The global 

network is a copy of actor and critic which perform optimization of network parameters through 

gradient descent. After the updates, new network parameters will be passed to all workers, and 

they start running another episode on the environment. It should be noted that these experiences 

are highly correlated and to break this correlation experience replay buffer is needed. For the 

asynchronous implementation (Figure 8 right), all agents begin an episode together, but whoever 

finishes first will go to the global network with a collection of experiences. The global network 

receives experiences from the worker, updates network parameters, and passes new parameters to 

the worker to start a new episode. In this approach, workers interact with the environment and the 

global network asynchronously. Therefore, each one uses the most recent parameters calculated 

by the global network, and they don’t have a correlation.  

 

Figure 8 A2C (left) and A3C (right) parallel procedure 

The Figure 9 illustrates the procedure of updates by the global network. First, through the 

reward and the next state, the critic will be updated. Using the new critic, the advantage function 
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will be calculated. The advantage value then would be used to calculate the gradient and update 

the actor. 

 

Figure 9 Update procedure of the global network 

2.3.2) Feedback Control 

The controller which calculates a speed limit for the control section is inspired by the ramp-

metering control algorithm called ALINEA, which is based on a proportional feedback control law 

(Papageorgiou et al. 1997). It calculates the variable speed limit from Equation 33. The target 

density (𝜌𝑇𝑎𝑟𝑔𝑒𝑡) is slightly lower than the critical density of the fundamental diagram, and real-

time density (𝜌𝑏) is the estimated density at the bottleneck calculated every 𝑇𝑐 seconds. The 

algorithm would change the speed limit as a proportion (𝜅) of the difference between target and 

measured density every time that a new density is calculated. 

             𝜈𝐿𝑖𝑚𝑖𝑡(𝑡) = 𝜈𝑇𝑎𝑟𝑔𝑒𝑡 + 𝑘 × (𝜌𝑇𝑎𝑟𝑔𝑒𝑡 − 𝜌𝑏(𝑡 − 1))         (33) 

As evident from Equation 33, in high demand conditions, the controller would keep the 

density at bottleneck close to target density to prevent breakdown. Whenever demand decreases, 

the measured density would be significantly less than target density which leads the controller to 

impose a higher speed limit and, in contrary, if demand increases measured density it would be 

substantially more than target density which leads the controller to enforce a lower speed limit. 

The controller always uses the previously estimated density so that drivers would have enough 

time to cover the distance between the control section and the bottleneck. 
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2.4) Environments 

Three environments have been developed in Python for training the RL algorithm. The 

control section is 1.0 km long. In this section, only CVs would be informed of the imposed speed 

limit. Notably, it is assumed that all CVs would comply completely. As soon as connected vehicles 

leave the control section, their speed will revert to the default desired speed. In other words, the 

desired speed of CVs is only varied while they are within the control section. The description of 

the simulation setup for each environment is explained in details as follows. 

2.4.1) Sag Curve 

For the sag curve bottleneck, the investigated network contains a single-lane freeway with 

a sag in the middle. The length of the network is 12 km. The road starts with a constant-gradient 

downhill section followed by a vertical sag curve, and at the end, a constant-gradient uphill section 

(Figure 10). The downhill section has a constant gradient equal to -0.5 percent and the uphill 

section has a constant slope equal to 2.5 percent. At the vertical sag, the slope increases linearly 

from -0.5 to +2.5 percent, and the length of the vertical curve is 0.6 km between x = 10.7 km and 

x = 11.3 km. The downhill section is long enough to make sure the queue would not reach the 

entry point of the simulation.  

 

 
Figure 10 The geometry of the sag curve bottleneck 
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The speed limit is assumed to be 120 km/h. Characteristics of vehicles and drivers, as 

defined by the IDM model, are assumed to be homogeneous to prevent the emergence of other 

types of bottlenecks in the simulation. These model parameters are shown in Table 1.  

Table 1 Characteristics of the car-following model 

)( h
km

des  )( 2s
ma  )( 2s

mb  )(s  )(0 ms  )( h
km

crit  )(−  )( 1−sc  )(st  

120 1.45 2.1 1.2 3 65 1.15 0.0001 0.5 

 

The control section is between x = 9.3 km and x = 10.3 km. The downstream end of the 

controlled section is 0.4 km away from the beginning of the transition section. The distribution of 

demand over time is illustrated in Figure 11. The first 5 minutes is a transition from zero to 2400 

veh/h, a capacity higher than the bottleneck capacity. The demand stays at 2400 veh/h for 10 

minutes then transitions back to zero across 5 minutes. Beyond this, the demand remains zero until 

all vehicles have exited the facility.  

 

Figure 11 Demand profile over time 
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With the given parameters above, a microsimulation model was created in Python. In 

Figure 12, a heat map which shows the average speed of vehicles for different times and locations 

is presented (left chart) for the base case, i.e., when no control strategy is implemented. At the very 

beginning of the simulation, the effect of the uphill is not significant enough to cause a breakdown 

at the bottleneck. After a while, a shockwave starts to propagate backward, starting at the 

bottleneck with constant speed. Since the breakdown is due to the geometry of the road, this 

shockwave continues to propagate until in-flow decreases. The second shockwave emerges shortly 

after the first one due to constant over-capacity demand. It shows that the model can reproduce 

stop-and-go waves at sags, which is consistent with the literature (Goni Ros et al. 2014a). 

 

 

Three other charts are included to provide additional performance measures for analysis. 

At the top right, the input demand over time (green line), as well as exit flow rates, are depicted 

Figure 12 Sag curve with no control: Input demand and exit flows (top right), the density 

measured by loop detector (middle right), heat-map (left), average vehicle speeds in the control 

section (bottom right) without a VSL control system 
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for the base case (red line). The second chart, density versus time plot at the middle right, shows 

the measured density by the loop detector at the uphill (see Figure 10). The chart on the bottom 

right shows the observed speed (red line) at the control section as well as the imposed VSL (It is 

assumed that when the control section is empty, the average speed is 120 km/h).  

2.4.2) Lane Reduction 

For the lane reduction bottleneck, the investigated network contains a three-lane freeway 

where one lane will be dropped towards the end of the network. The length of the network is 6 km. 

The road has a constant-gradient of zero. The first lane drops at x=5.7 km. The control section 

starts at x=1.7 km and ends at x=2.7 km. The control section only controls the speed-limit of lane 

two and lane three. The speed limit of the dropped lane will not be affected. Two loop detectors 

are placed to read the density on the road. The first one is located at the bottleneck (x=5.7 km), 

and the second one at the entrance of the network (x=0.05 km). There are three roadside units 

(RSU) to communicate the information with the RL algorithm and CVs. The first RSU (A) is 

located at the bottleneck to inform the RL algorithm with the density information collected by the 

loop detector. The second RSU (B) is located at the entrance of the control section, and the third 

RSU (C) is located at the entrance of the network to inform the RL algorithm about the density at 

the entrance of network. The geometry of this bottleneck is presented in Figure 13. 



 
Figure 13 The geometry of the lane reduction bottleneck 
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The speed limit is 120 km/h. Characteristics of vehicles and drivers, as defined by the IDM 

model, are assumed to be same as sag curve problem (Table 1). The LMRS lane-changing model 

was developed to perform lane changing behavior. Characteristics of the LMRS model is assumed 

to be homogenous. These hypothetical model parameters are shown in Table 2. Since the VSL 

only control lanes two and three, the desire to move to lane one would increase before entering the 

control section. Therefore, the lane-changing is forbidden for all lanes starting from the first loop 

detector (C) until the end of the control section to prevent other types of bottlenecks at the control 

section. 

Table 2 Characteristics of the LMRS model 

𝑇𝑚𝑖𝑛(𝑠) 𝜏(𝑠) 𝑥0(𝑚) 𝑡0(𝑠) 𝑑𝑓𝑟𝑒𝑒 𝑑𝑠𝑦𝑛𝑐 𝑑𝑐𝑜𝑜𝑝 
𝜈𝑔𝑎𝑖𝑛(

𝑘𝑚

ℎ
) 

0.56 25 295 43 0.365 0.577 0.78 69.6 

 

The distribution of demand over time is illustrated in Figure 14. The first 5 minutes is a 

transition from zero to 4200 veh/h, a capacity higher than the bottleneck capacity. The demand 

stays at 4200 veh/h for 10 minutes then transitions back to zero across 5 minutes. Beyond this, the 

demand remains zero until all vehicles have exited the facility.  
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Figure 14 Demand profile over time 

With the given parameters above, a microsimulation model was developed in Python. In 

Figure 15, a heat map which shows the average speed of vehicles for different times and locations 

are shown (left chart) for the base case, i.e., when no control strategy is implemented. 

 

 

Figure 15 Lane reduction with no control: Input demand and exit flows (second row left), the 

density measured by loop detector (second row middle), heat-map of speed on time –location 

diagram (first row), and average vehicle speeds in the control section (second row right) without 

a VSL control 
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2.4.3) On-Ramp 

For the on-ramp bottleneck, the investigated network contains a two-lane freeway with an 

on-ramp which has a parallel acceleration lane of 150 meters. The length of the network is 6 km. 

The road has a constant-gradient of zero, and the parallel acceleration lane ends at x=5.7 km. The 

control section starts at x=1.7 km and ends at x=2.7 km. The control section only controls speed-

limit of main lanes. The speed limit of onramp will not be affected. Two loop detectors have been 

implemented to read the density in the environment. The first one is located at the bottleneck 

(x=5.7 km), and the second one is located at the entrance of the network (x=0.05 km). There are 

three roadside units (RSU) to communicate the information with the RL algorithm and CVs. The 

first RSU (A) is located at the bottleneck to inform the RL algorithm with the density information 

collected by the loop detector. The second RSU (B) is located at the entrance of the control section, 

and the third RSU (C) is located at the entrance of the network to inform the RL algorithm about 

the density at the entrance of network.  

 

The speed limit is 120 km/h. Characteristics of vehicles and drivers, as defined by the IDM 

model, are assumed to be same as sag curve problem (Table 1). Characteristics of the LMRS model 

in this bottleneck are assumed to be the same as the lane reduction bottleneck (Table 2). The lane-

Figure 16 The geometry of on-ramp bottleneck 
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changing behavior is forbidden from the first loop detector until the end of the control section to 

prevent other types of bottlenecks at the control section. The Figure 16, illustrates the geometry 

of on-ramp bottleneck. 

 

The demand profile over time is illustrated in Figure 17. The first 5 minutes is a transition 

from zero to 2000 veh/h, for the main road and to 1000 veh/h for the ramp. The demand stays 

overcapacity for 10 minutes, then transitions back to zero across 5 minutes. Beyond this, the 

demand remains zero until all vehicles have exited the facility. A microsimulation model was 

created in Python. In Figure 18, a heat map which shows the average speed of vehicles for different 

times and locations are shown (left chart) for the base case, i.e.  

Figure 17 Demand profile over time 
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2.5) RL Architecture: Action, State Space, and Reward  

 

This research, has been conducted on an Intel(R) Xeon(R) CPU with eight core. Each core 

has two threads which can be utilized for multi-threading processing. Therefore, an A3C algorithm 

with 16 agents was trained to optimally control a variable speed limit with five possible actions 

(possible actions=[-10,-5,0,5,10]). In every minute t, the agent must take one of the five possible 

actions which will lead to an increase, decrease, or no change to the speed limit at the control 

section at time t-1. To represent the state space, two key measurements from the sensors are 

considered: The density at the bottleneck (𝜌𝑏(𝑡)), and the density at the network entrance (𝜌𝑒(𝑡)). 

To capture the temporal variations and features of states, ten consecutive states are stacked together 

as shown in Equation 34 and then fed to the neural networks. 

Figure 18 Onramp with no control: Input demand and exit flows (second row left), the density 

measured by loop detector (second row middle), heat-map of speed on time –location diagram 

(first row), and average vehicle speeds in the control section (second row right) without a VSL 

control 



37 

 

𝑆𝑡𝑎𝑡𝑒𝑠 = {[𝜌𝑏(𝑡 − 9),   𝜌𝑒(𝑡 − 9)],… , [𝜌𝑏(𝑡),   𝜌𝑒(𝑡)]} 

 

        (34) 

The actor and critic are both neural networks with the input shape of 10×2 and four fully 

connected hidden layers with 64, 128,128, and 128 units as it is shown in Figure 19. All units in 

hidden layers have rectified linear unit (RELU) as their activation function. The output layer of 

the Actor has five units which is equal to number of actions with a Softmax as the activation 

function. The output layer of the Critic has only one unit which calculates the value of being in a 

state with a linear activation function. 

 

Figure 19 Architecture of Actor and Critic network 

The main objective of the VSL is to decrease the total travel time of all vehicles in the 

system. The delay for a vehicle is computed relative to the hypothetical scenarios mentioned 

above, where the bottleneck is assumed not to influence the traffic flow. For the simulated demand, 
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vehicles travel through the corridor at free-flow speeds. For a given scenario, the total delay is the 

sum of the individual vehicle delays (Equation 35). For example, when there is no VSL control 

system, the system performs, as shown in Figure 12, Figure 15 and Figure 18. This total delay 

(TD) is then taken as a reference and compared to the total delay under the VSL control strategies. 

Since the main objective is to decrease total delay, it is not possible to calculate total delay unless 

the episode ends. Therefore, the reward of all non-terminal states is considered to be zero. 

Consequently, the reward for the terminal state is defined as shown in Equation 36. The terminal 

reward is discounted and distributed for all action state pairs taken in an episode with discount 

factor (γ) equals to 0.99. 

𝑇𝐷 = 𝑇𝑇𝑇𝐵𝑜𝑡𝑡𝑙𝑛𝑒𝑐𝑘 − 𝑇𝑇𝑇𝑁𝑜𝐵𝑜𝑡𝑡𝑙𝑛𝑒𝑐𝑘             (35) 

𝑅𝑒𝑤𝑎𝑟𝑑(𝑡) = {

0 𝑡 ≠ 𝑇
𝑇𝐷𝑁𝑜𝐶𝑜𝑛𝑡𝑟𝑜𝑙 − 𝑇𝐷𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑑

𝑇𝐷𝑁𝑜𝐶𝑜𝑛𝑡𝑟𝑜𝑙
𝑡 = 𝑇 

            (36) 
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CHAPTER 3:  RESULTS 

The resulting system performance for different bottlenecks is explained in this chapter. 

Moreover, an extensive sensitivity analysis has been investigated for each bottleneck to understand 

the impact of different level of connectivity on the performance of models.  

3.1) Optimum Solutions of the feedback control algorithm 

To compare the RL model with an existing model in the literature, a feedback control was 

developed in Python based on Equation 33. Optimal parameters of this controller were found 

through a grid search. Figure 20 shows the optimal solutions of the feedback controller for the sag 

curve bottleneck. The feedback controller was able to eliminate 53% of the delay caused by sag 

curve when the penetration rate of CVs is 100%. 

 

 

Figure 20 Sag curve with feedback control: Input demand and exit flows (top right), the density 

measured by loop detector (middle right), heat-map of speeds (left), average vehicle speeds in 

the control section (bottom right) 
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Figure 21 shows the optimal solutions of the feedback controller for the lane reduction bottleneck. 

The feedback controller was able to eliminate 21% of the delay caused by on-ramp when market 

penetration rate of CVs was 100%. The VSL has reached to speed as low as 20 km/h. 

 

Figure 21 Lane reduction with feedback control: Input demand and exit flows (the second row 

left), the density measured by loop detector (second-row middle), heat-map of speed on the time-

location diagram (first row), and average vehicle speeds in the control section (second row right) 

without a VSL control 

The Figure 22, shows the optimal solutions of the feedback controller for the on-ramp bottleneck. 

The feedback controller was able to eliminate 13% of the delay caused by on-ramp. When the 

market penetration rate of CVs was 100%. The VSL has reached to speed as low as 20 km/h. 
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3.2) Optimum Solutions of RL algorithm 

For each bottleneck, the RL algorithm has been trained. An episode is a simulation with 

the given demand profile. It ends when all vehicles exit the network. An agent will go through the 

simulation and take actions based on its Actor and Critic (the given ANNs from global network). 

When an episode ends the worker give its collected experiences to the global network. The global 

network will update the Actor and Critic’s networks and and give back the new parameters to the 

worker. This proccess is done asyncrounosly in parrallel with 16 agents. Figure 23 shows 50-

points moving average for total delay improvement of the RL algorithm for the sag curve 

bottleneck. The algorithm convergence to the optimal solution after around ten thousand episodes. 

Since the action space of the RL algorithm is discrete, the Q-values have discontinuity, and the 

divergence from the optimal solution can be seen between 12000 and 14000 episodes.  

Figure 22 Onramp with feedback control: Input demand and exit flows (second row left), the 

density measured by loop detector (second row middle), heat-map of speed on time-location 

diagram (first row), and average vehicle speeds in the control section (second row right) without 

a VSL control 
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The performance of the controller is shown in Figure 24 for the sag curve bottleneck. The 

market penetration rate (MPR) is 100%. The VSL reduced the total delay by 63% compared to the 

no control scenario. The shockwave is moved upstream of the control section. The density at the 

bottleneck stays below 20 veh/km at the onset of congestion which is the critical density. In the 

bottom-right chart, it is clear that vehicles adhere to the imposed VSLs since their average speeds 

follow the VSLs.  

 

Figure 23 Convergence of the RL algorithm for sag curve bottleneck 
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The Figure 25, illustrates the performance of the RL algorithm for lane reduction 

bottleneck. The MPR is 100%. Even though the algorithm was not able to clear the congestion at 

the bottleneck, it was able to reduce the impact of the capacity drop. The VSL reduced the total 

delay by 64% compared to the no control scenario. 

 

Figure 24 Sag curve with RL control: Input demand and exit flows (top right), the density 

measured by loop detector (middle right), heat-map with sample trajectories (left), average 

vehicle speeds in the control section (bottom right) without a VSL control system 
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Figure 25 Lane reduction with RL control: Input demand and exit flows (second-row left), the 

density measured by loop detector (second-row middle), heat-map of speed on the time-location 

diagram (first row), and average vehicle speeds in the control section (second row right) without 

a VSL control 

Figure 26 illustrates the performance of the RL algorithm for the on-ramp bottleneck. The 

MPR is 100%. Same as the lane reduction problem, the algorithm was not able to clear the 

congestion at the bottleneck, but it was able to reduce the impact of the capacity drop. The VSL 

reduced the total delay by 19% compared to the no control scenario. This reduction is 13% with 

the feedback control algorithm as discussed before. Performance of RL controller for on-ramp 

bottleneck is significantly lower than the other two bottlenecks. The reason should be due to the 

limited availability of lane changing for on-ramp. Vehicles only have the acceleration lane to 

perform the lane changing and enter the main road. Therefore, its harder to dissipate the 

congestion. It is notable that all RL solutions outperform the feedback controller. They also make 

a smooth patterns compared to feedback control (Figure 20, Figure 21, and Figure 22). 
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Figure 26 Onramp with RL control: Input demand and exit flows (second-row left), the density 

measured by loop detector (second-row middle), heat-map of speed on the time-location diagram 

(first row), and average vehicle speeds in the control section (second row right) without a VSL 

control 

3.3) Performance of the RL under new demand patterns 

As it is shown in the previous section, the RL algorithm was able to solve all three 

bottlenecks through VSL. It outperforms the feedback control and produces a much smoother 

pattern for VSL. It is also important to see how the RL algorithm trained for these short demands 

would perform on new demand patterns. Therefore, a scenario where a short period peak demand 

followed by longer peak demand was investigated for all three bottlenecks to see how the RL 

algorithm would react to the fluctuation in demand. The Figure 27, illustrates the performance of 

the RL algorithm on sag curve bottleneck for the longer demand. The RL was able to eliminate 

48% of delay caused by the sag curve. 
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The Figure 28, shows the result of the feedback control on the same demand pattern. The 

feedback controller is also able to respond effectively to fluctuation in demand, but it was able to 

only eliminate 33% of the delay caused by the sag curve. It should be noted all three algorithms 

were trained only on short demand with one peak. These results show that the RL algorithm is 

robust to the length of demand.  

 

Figure 27  Sag curve with RL control: Input demand and exit flows (top right), the density 

measured by loop detector (middle right), heat-map with sample trajectories (left), average 

vehicle speeds in the control section (bottom right) without a VSL control system 
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Figure 28 Sag curve with feedback control: Input demand and exit flows (top right), the density 

measured by loop detector (middle right), heat-map with sample trajectories (left), average 

vehicle speeds in the control section (bottom right) without a VSL control system 
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The Figure 29, illustrates the performance of the RL algorithm on lane reduction bottleneck 

for the new demand. The RL was able to eliminate 36% of delay caused by the lane reduction. 

 

 

The Figure 30, shows result of the feedback control on the same demand pattern. The 

feedback controller is also able to respond effectively to fluctuation in demand, but it was able to 

only eliminate 10% of the delay caused by the sag curve.  

 

 

Figure 29 Lane reduction with RL control: Input demand and exit flows (second row left), the 

density measured by loop detector (second row middle), heat-map of speed on time-location 

diagram (first row), and average vehicle speeds in the control section (second row right) without 

a VSL control 
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Figure 30 Lane reduction with feedback control: Input demand and exit flows (the second row 

left), the density measured by loop detector (second-row middle), heat-map of speed on the time-

location diagram (first row), and average vehicle speeds in the control section (second row right) 

without a VSL control 
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The Figure 31, illustrates the performance of the RL algorithm on lane reduction bottleneck 

for the longer demand. The RL was able to eliminate 11% of delay caused by the lane reduction.  

 

The Figure 32, shows the result of the feedback control on the same demand pattern. The 

feedback controller is also able to respond effectively to fluctuation in demand, but it was able to 

only eliminate 5% of the delay caused by the sag curve.  

Figure 31 Onramp with RL control: Input demand and exit flows (second-row left), the density 

measured by loop detector (second-row middle), heat-map of speed on the time-location diagram 

(first row), and average vehicle speeds in the control section (second row right) without a VSL 

control 



51 

 

 

Figure 32 Onramp with feedback control: Input demand and exit flows (second-row left), the 

density measured by loop detector (second-row middle), heat-map of speed on the time-location 

diagram (first row), and average vehicle speeds in the control section (second row right) without 

a VSL control 

3.4) Sensitivity to the Market Penetration Rate of Connected Vehicles 

In this section, the MPR level of the CVs is varied to understand the impacts of different 

MPR on system performance. As arrivals of CVs are assumed to be random, each generated 

vehicle is predicted to be a CV based on the set MPR. Consequently, the total number of CVs in 

the system (n) has a Binomial distribution. Each market penetration level is simulated 50 times to 

account for the variability in n as well as their arrival times. Median performance of the three 

scenarios is illustrated in Figure 33. Since bottlenecks are different, the magnitude of 

improvements for these three models are not comparable, but the trend shows reducing MPR will 

result in lower improvement. For the lane reduction and the on-ramp bottlenecks, as the percentage 

of CVs increases, the median improvement also increases at a constant rate. But the sag curve 

problem has a sudden jump when the percentage of CVs goes beyond 30%. It should be noted this 

models are only trained 100% MPR. 
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Figure 33 Median performance of different penetration rates for 50 simulation 

The results of 50 runs for the sag curve bottleneck are presented as boxplots in Figure 34. 

When the MPR is less than 35%, the performance has a wide range of variation. It is possible to 

get a  “negative” performance for MPRs less than 15%. The density diagram shown previously in 

Figure 12 (middle right) shows how density at the bottleneck would change if there were no control 

strategy.  The most critical period for control strategy is between 5 to 10 minutes from the 

beginning of the simulation, which is the transition period from the uncongested to the congested 

traffic. After this period, congestion starts to propagate and grows backward. If the density of 

connected vehicles over time within this period is not enough to mitigate the initiation of the 

breakdown, the queue will extend from the bottleneck location (i.e., uphill) to the control sections. 

It will make a recovery to normal operations almost impossible.  
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Figure 34 Boxplots of sensitivity analysis for sag curve bottleneck 

The results of 50 runs for the lane reduction bottleneck is presented as boxplots 

in Figure 35. Performance of the RL algorithm for this bottleneck has a wide range of 

variation. The magnitude of variation tends to increase when the percentage of CVs 

decrease. The model can get a “negative” performance for MPRs less than 15%. It is 

notable that for the MPR of 5%, the model has widest variation range. It can have 

negative performance as well as a positive performance. The positive performance can 

even get higher than 100% connectivity performance. To understand how this is 

possible, the extreme case of this boxplot where the model was able to have 67% 

improvement was investigated in details. 
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Figure 35 Boxplots of sensitivity analysis for lane reduction bottleneck 

As it is shown in Figure 36, the RL algorithm performs its normal behavior, but CVs in 

the control section are randomly distributed in a way that creates a distinct wave-shaped average 

speed behavior. The speed diagram is zoomed in for better observation (Second row right). Since 

the model has a discrete action space and boundaries for changing the speed limit, it is not able to 

reproduce this behavior. Therefore, the RL algorithm with the current action space is not able to 

reach this level of performance. 

 

 

 



55 

 

 

 

 

The results of 50 runs for the on-ramp bottleneck is presented as boxplots in Figure 37. 

Performance of RL algorithm for this bottleneck has a wide range of variation too. The magnitude 

of variation tends to increase when the percentage of CVs decrease. The model has “negative” 

performances for MPRs less than 25%. The variation performances for MPRs higher than 50% are 

in the same range. 

 

Figure 36 extreme case of lane reduction bottleneck at MPR of 5% with 67% improvement 
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Figure 37 Boxplots of sensitivity analysis for on-ramp bottleneck 

3.5) Adaptive VSL for different MPR of CVs 

One of the features of the RL algorithm is the ability to add new inputs to the model with 

a minor modification. In our setup, we have an RSU and a loop detector at the entrance of the 

network. Since CVs can communicate with the RSU and the loop detector can count the number 

of vehicles passed, the percentage of CVs can be calculated at each interval of simulation. 

Percentage of CVs at the previous interval was added to the neural network of the model as an 

input (Equation 37). Thus, the model can adapt itself and choose different solutions for different 

MPRs. We use the previous interval to take in to account the time that it takes for each CV to reach 

the control section. The architecture of the neural network remains the same except the input vector 

has 10×3 elements.  

𝑆𝑡𝑎𝑡𝑒𝑠 = {[𝜌𝑏(𝑡 − 9),   𝜌𝑒(𝑡 − 9),%𝐶𝑉(𝑡 − 10)], … , [𝜌𝑏(𝑡),   𝜌𝑒(𝑡),%𝐶𝑉(𝑡 − 1)]}         (37) 
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The model has been trained on the sag curve bottleneck environment. At the beginning of 

each episode, a random MPR level would be chosen from a uniform distribution (5% to 100% with 

an increment of 5). Once chosen, the MPR level will stay constant for the whole simulation. 

 

Figure 38 Boxplots of sensitivity analysis for sag curve bottleneck 

The results of 50 runs of adaptive RL algorithm for the sag curve bottleneck are presented 

as boxplots in Figure 38. The RL algorithm was able to reduce the variation of performances 

significantly compared to the nonadaptive version (Figure 34). There are no negative results, and 

the model has significant improvement even for lower MPRs. There can be seen three different 

levels of performances which correspond to different solutions that the algorithm selects to solve 

the problem. Figure 39, illustrate these three patterns. Based on the MPR levels, the RL controller 
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observes the system state at the entrance of the network; it chooses which pattern has a higher 

expected value of an improvement. 

 

 

The same approach has been investigated for the other two bottlenecks. The results of 50 

runs of adaptive RL algorithm for the lane reduction bottleneck are presented as boxplots in Figure 

40. The adaptive RL algorithm was able to show better performance in comparison to the non-

adaptive version (Figure 35). The negative performances are eliminated, and overall median 

performances are shifted up. 

 

Figure 39 Imposed speed-limit of the adaptive RL controller 
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Figure 40 Boxplots of sensitivity analysis for lane reduction bottleneck 

The adaptive RL solutions for different MPR levels are illustrated in Figure 41. The controller 

chooses between seven different patterns to perform under different MPRs. The CVs are the means 

by which the controller regulates the traffic flow in the stream. When the MPR decreases the 

controller gradually stretches the length and increases the magnitude of its speed reduction to 

interact with more CVs. 

 



60 

 

 

Figure 41 Imposed speed-limit of the adaptive RL controller 

The results of 50 runs of adaptive RL algorithm for the on-ramp bottleneck are presented 

as boxplots in Figure 42. Similar to the other bottlenecks, as compared to the non-adaptive version, 

the adaptive controller was able to reduce the variation in performance significantly. The controller 

shows stability for majority of MPRs but less than 20% the variation starts to increase and there 

are still negative performances at 5% MPR. 
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Figure 42 Boxplots of sensitivity analysis for lane reduction bottleneck 

Figure 43, illustrates different patterns the controller chooses to interact with the 

environment in response to the different MPRs. Through five different patterns the controller tries 

to interact with the environment in the most efficient way and maximize the reward expectation 

which is equal to reduction in the total delay. 
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Figure 43 Imposed speed-limit of the adaptive RL controller 
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CHAPTER 4:  CONCLUSION 

In this study, an RL algorithm is developed and implemented in a simulation environment 

for controlling VSLs to manipulate the inflow of vehicles to the bottleneck on a freeway to 

minimize delays and increase throughput. Infrastructure-to-vehicle (I2V) communication for CVs 

is assumed to be available for implementing the VSL strategy. Asynchronous Advantage Actor-

Critic (A3C) has been developed to control the VSL. Through the A3C control algorithm, the 

speed of CVs is manipulated in the control section at the upstream of the bottleneck to minimize 

congestion. Three different bottlenecks are investigated to understand the effectiveness of the RL 

algorithm on controlling VSL. These bottlenecks include a sag curve, lane reduction, and an on-

ramp. Various market penetration rates for CVs are considered in simulations. It is demonstrated 

that the RL algorithm can be a general solution for all three bottlenecks in the sense that the same 

modeling structure can effectively improve system performance.  

An RL agent is trained for each bottleneck. The optimal solution for different bottlenecks 

is not the same, but the results show that the RL outperforms feedback controller in all bottlenecks. 

If MPR is high enough, the RL controller is able to reduce nearly 63% of the total delay for the 

sag curve bottleneck, 64% of the total delay for lane reduction, and 19% of total the delay for on-

ramp bottleneck. A sensitivity analysis shows that even with low MPR (e.g., 15%) the system can 

reduce delays significantly but the variation in performance can be high. The RL controller might 

induce a negative performance for lower MPRs (e.g., at less than 15% MPR for sag curve or lane 

reduction, and at less than 25% for on-ramp). The performance of the RL controller is bounded by 

its action space. The results demonstrate that not only the MPR of CVs but also how CVs are 

distributed in the traffic stream is critical for system performance. While MPR could be high, 

uneven distribution of CVs and lack of CVs at the critical periods as congestion is building up may 
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cause a deterioration in system performance. Hence, such systems should be designed with care, 

and the temporal and spatial distribution of CVs should also be accounted for while evaluating 

system performance.  

It is shown that by adding CVs arrival rate as an input, the RL controller can learn to adapt 

its solution to the MPR in the traffic stream. The controller uses different patterns to change the 

VSL depending on what rate of CVs it senses at the upstream. This approach increased the 

performance of the controller significantly, even for low MPRs. It also prevents any negative 

performance for sag curve and lane reduction bottleneck. For the on-ramp bottleneck there are still 

some negative performances when the MPR is low.   

A similar control strategy can be applied to networks with multiple bottlenecks, where 

capacity drop may occur. Further evaluation of the strategy will require investigating 

heterogeneous traffic. More complex VSL solutions such as separate VSL for each lane could also 

be considered to explore the performance of the proposed control strategy. 
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