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Characterization of Respiratory and Cardiac Motion from
Electro-Anatomical Mapping Data for Improved Fusion
of MRI to Left Ventricular Electrograms
Sébastien Roujol, Elad Anter, Mark E. Josephson, Reza Nezafat*

Department of Medicine (Cardiovascular Division), Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, United States of America

Abstract

Accurate fusion of late gadolinium enhancement magnetic resonance imaging (MRI) and electro-anatomical voltage
mapping (EAM) is required to evaluate the potential of MRI to identify the substrate of ventricular tachycardia. However,
both datasets are not acquired at the same cardiac phase and EAM data is corrupted with respiratory motion limiting the
accuracy of current rigid fusion techniques. Knowledge of cardiac and respiratory motion during EAM is thus required to
enhance the fusion process. In this study, we propose a novel approach to characterize both cardiac and respiratory motion
from EAM data using the temporal evolution of the 3D catheter location recorded from clinical EAM systems. Cardiac and
respiratory motion components are extracted from the recorded catheter location using multi-band filters. Filters are
calibrated for each EAM point using estimates of heart rate and respiratory rate. The method was first evaluated in
numerical simulations using 3D models of cardiac and respiratory motions of the heart generated from real time MRI data
acquired in 5 healthy subjects. An accuracy of 0.6–0.7 mm was found for both cardiac and respiratory motion estimates in
numerical simulations. Cardiac and respiratory motions were then characterized in 27 patients who underwent LV mapping
for treatment of ventricular tachycardia. Mean maximum amplitude of cardiac and respiratory motion was 10.262.7 mm
(min = 5.5, max = 16.9) and 8.862.3 mm (min = 4.3, max = 14.8), respectively. 3D Cardiac and respiratory motions could be
estimated from the recorded catheter location and the method does not rely on additional imaging modality such as X-ray
fluoroscopy and can be used in conventional electrophysiology laboratory setting.
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Introduction

Catheter-based ventricular tachycardia (VT) ablation signifi-

cantly reduces and delays the incidence of implantable cardiover-

ter-defibrillator therapy in post myocardial infarction patients

[1,2]. VT ablation is generally guided by invasive electro-

anatomical mapping (EAM) of the left ventricle (LV) [3]. During

EAM, a catheter based mapping is performed where intra-cardiac

electrograms and catheter tip location are recorded for various

point location in the LV. A 3D shell representing the LV surface,

color coded with electrogram characteristics such as bipolar

voltage is then used for the guidance of the ablation procedure.

EAM allows identification of the core scar area (bipolar

voltage,0.5 mV) and heterogeneous tissues (0.5 mV,bipolar

voltage,1.5 mV) which contained the VT substrate. However,

EAM is limited by a low spatial resolution, incorrect voltage values

due to imperfect catheter contacts, and its inability to precisely

characterize the 3D structure of LV scar. In addition, EAM is

time-consuming and requires an experienced operator. These

limitations could therefore be associated with the low efficacy of

the treatment where a recurrence rate of VT episodes has been

reported to be up to 50% [1]. Therefore, a better identification of

the VT substrate using alternative approaches may improve the

efficacy of VT ablation.

Magnetic resonance imaging (MRI) can be used to assess

myocardial scar using late gadolinium enhancement (LGE) [4,5].

Core scar and heterogeneous tissues have been shown to depict

different signal intensity in LGE images [6,7,8]. LGE provides

high resolution information which allows identification of hetero-

geneous tissues which may not be detectable with EAM [9].

Heterogeneous tissues identified by LGE have been recently

shown to contain the critical isthmuses of VT [10] and shows

promises for VT substrate characterization [11,12]. However, to

investigate this potential relationship an accurate fusion of voltage

map and LGE is required.

Several fusion approaches are available in clinical EAM

software such as landmark registration and surface registration

[13,14]. Recently, a combination of an optimal landmark

registration with a novel scar constrained registration has been

proposed in order to improve the robustness of the estimation

using the scar area location in both datasets to constrain the

registration process [15]. These approaches only estimate 3D rigid

transformations (translations+rotations) and mainly correct for

misalignment between the MRI coordinates system and EAM

coordinate system. However, a more complex geometric transfor-
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mation is required since both datasets are generally not acquired at

the same cardiac and respiratory phase. LGE is acquired using

respiratory gating at end expiration and cardiac gating at mid rest

diastolic period when the heart motion is minimal [16]. On the

other hand, EAM points are acquired at end diastole using a

respiratory gating approach at end expiration. Unfortunately,

points may be deliberately acquired outside the gating window and

the gating window position may also be updated or could become

unusable during the procedure. In such conditions, EAM point

locations will be corrupted by respiratory motion. Characteriza-

tion and correction of cardiac and respiratory motion in EAM

data is thus necessary to improve the fusion process.

Several methods have been recently proposed for estimation

and correction of the respiratory and cardiac motion for catheter

ablation of the left atrium [17,18,19,20,21]. Two main approaches

have been developed for image-based respiratory motion estima-

tion: 1) diaphragm tracking [19,20,21] as a surrogate of the

respiratory motion and 2) direct tracking of the heart [19] or a

catheter near the ablation target [17,19]. These approaches rely

on the use of additional imaging modalities such as ultrasonic

images [21] or X-Ray fluoroscopy [17,19,20]. Furthermore, pre-

built models of cardiac and respiratory motion [18,20] have been

proposed to address mis-registration related to cardiac motion.

In this paper we propose to characterize both cardiac and

respiratory motion from EAM data itself without the use of any

additional imaging modality. Numerical simulations and in vivo

data in patients undergoing VT ablation are used to evaluate the

accuracy of the proposed motion estimation.

Materials and Methods

In this study, we propose to use the location of the catheter

electrode recorded by clinically-available EAM guidance system to

simultaneously estimate the cardiac and respiratory motion of the

heart.

A. Ethics Statement
The study was performed at the Beth Israel Deaconess Medical

Center (BIDMC), Boston, MA, USA and was approved by the

Committee on Clinical Investigations of BIDMC (Protocol No.

2013P-000231). This study was conducted with a waiver of patient

consent approved by the Committee on Clinical Investigations of

BIDMC.

B. Electro-anatomical Mapping Data
In point-by-point mapping used for identification of the VT

substrate, the Carto system (Biosense, Webster, Inc., Diamond

Bar, CA) records the electrical signal (including 12-lead ECG and

catheter based measurements) at a frame rate of 500 Hz together

with the 3D catheter location at a frame rate of 60 Hz. This

information is recorded for 2.5 s for each EAM point. Figure 1

shows example of 3D catheter location and ECG signal recorded

over 2.5 s. Influence of the cardiac motion can be seen on the

catheter tip location and appears well synchronized with the ECG

signal. Furthermore, smooth overall drift of the catheter tip

location induced by the breathing activity can also be observed.

The respiratory motion of the heart generally has its dominant

component along the foot-head direction as depicted in Figure 1d.

C. Demodulation of Cardiac and Respiratory Motion
Components from Catheter Location

The respiratory rate (in free breathing conditions) and the heart

rate (in sinus rhythm) are generally in the range of 0.15-0.5 Hz

and 1–2 Hz, respectively. Therefore, we hypothesize that both

temporal frequency spectrums can be identified from the initial

signal and isolated using multi-band filtering approaches [22].

Figure 2 shows the proposed algorithm to extract respiratory and

cardiac motion from catheter location recorded by the EAM

system.

In a first step, respiratory and cardiac rate are approximated for

each EAM point to enable estimation of each frequency spectrum

and to define appropriate band-pass filters. Due to the relative low

inter- and intra-patient variability of the respiratory rate, we

propose to approximate it by a frequency of 0.3 Hz. Heart rate

may show higher inter-patient variability and also intra-patient

variability. Therefore, we propose to estimate the heart rate

corresponding to each EAM point using the associated ECG

signal. Each EAM point acquisition is triggered by R-wave

detection on a reference channel of the 12-lead ECG. This trigger

time is located at time = 2 s in the 2.5 s of recorded signal. To

estimate the patient heart rate corresponding to the time of each

EAM point acquisition, we estimate the time interval between the

triggering R-wave (t = 2 s) and the previous R-wave. A semi-

automatic method is employed for R-wave detection. A voltage-

threshold technique was used to detect potential R-wave

candidates (voltage.half of the triggering R-wave voltage). Since

this leads to the detection of multiple false positive candidates

around the true R-wave location, a second approach was applied

to filter out false positive detections. An R-wave candidate was

accepted only if it had a voltage higher to its surrounding

candidates (over a temporal window of 300 ms). The R-wave

immediately detected before the triggering R-wave was selected.

To prevent potential incorrect selection among the different

remaining candidates, a visual inspection and potential correction

of the detected R-wave was performed by an experienced

operator.

In a second step, multi-band filters are built using the estimated

heart rate and respiratory rate to demodulate both motion

components from the recorded 3D catheter electrode location

signal (S tð Þ with 0vtvM and M the number of measurements

during the 2.5 s of recorded signal). In order to reduce border

distortions introduced by multi-band filters at signal boundaries

(and caused by signal discontinuity between both temporal

extremities), the initial signal boundaries were 3-time extended

to obtain Sext tð Þ as follows [23]:

Sext tð Þ~
S 0ð Þ if tvM

S M{tð Þ if Mƒtv2M

S M{1ð Þ if 2Mƒtv3M

,

8><
>: ð1Þ

and a Tukey window filter [24] (with the ratio of cosine-tapered

section length to the entire window length equal to 0.1) was

applied. Finally, the resulting signal was 10-times zero-padded to

refine the frequency representation in the Fourier domain. After

Fast Fourier Transform, ideal non-causal filters were applied to

only keep the frequency bands associated to either cardiac or

respiratory motion (by setting other frequencies to zero). Respi-

ratory and cardiac frequencies were assumed to range from 0 Hz

to Fcut and from Fcut to 10 Hz, respectively. The high frequency

cutoff of 10 Hz was used to remove the noise related to the EAM

system measurement. Fcut was defined as:

Fcut~Frzl Fc{Frð Þ, ð2Þ

where Fr is the respiratory frequency, Fc is the cardiac frequency

and l is a tunable parameters defined as l[ 0,1½ �. The optimal l
value is expected to depend on the range of both Fr and Fc and its

Physiological Motion from Catheter-Based Mapping

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e78852



influence was characterized in simulations and is reported in

Figure S1. Finally, inverse Fast Fourier Transform of the two

resulting signals was applied to recover the time-domain signal

representing both cardiac and respiratory motion components.

D. Experimental Validation in Numerical Simulations
To investigate the accuracy of the proposed algorithm, catheter

location evolution signal was simulated and used as input of the

proposed algorithm. When the catheter is in stable contact (no

catheter manipulation and no drift of the catheter), its location is

mainly influenced by the cardiac contraction and the breathing

activity. Therefore, the catheter location evolution signal was

simulated using 3D models of respiratory motion and cardiac

motion. These motion models were created from real-time cine

MRI data acquired from 5 healthy adult subjects using a 1.5T

Philips scanner with a 32 channel coil arrays (Philips Healthcare,

Best, The Netherlands). Written informed consent was obtained

from all recruited subjects and the imaging protocol was approved

by our institutional review board.

3D cardiac motion model creation. Cardiac motion was

measured from 2D real time cine images acquired in the short axis

view within a breath hold. A multi-shot echo-planar imaging (EPI)

steady state free precession (SSFP) sequence was employed with

the following parameters: TR/TE/a= 7.8 ms/2.3 ms/75u, field

of view = 3206320 mm2, spatial resolution = 2.562.5 mm2, slice

thickness = 10 mm, EPI factor = 11, SENSE acceleration fac-

tor = 3. The temporal resolution of the sequence was 34 ms

(30 Hz) and 300 dynamics images (10 s of imaging) were acquired

Figure 1. Example of recorded EAM signal. ECG (a) and 3D catheter location (b,c,d) acquired for one EAM point using the clinical software. The
3D motion is recorded along the right-left (b), anterior-posterior (c) and foot-head (d) directions. In this point, the cardiac motion appears dominant
in the anterior–posterior direction (c) and the foot-head direction (d). As expected the main contribution of the respiratory motion can be notice in
the foot-head direction (d) where a global drift of the catheter tip location can be observed.
doi:10.1371/journal.pone.0078852.g001

Figure 2. Schematic of the proposed algorithm for extraction of cardiac and respiratory motion from catheter location for each
recorded electroanatomical (EAM) point. Heart rate at the time of EAM point acquisition is first estimated (step 1) and used to determine the
temporal frequency band associated with both cardiac and respiratory motion. Multi-band filters are then used (step 2) to demodulate both motion
components.
doi:10.1371/journal.pone.0078852.g002

Physiological Motion from Catheter-Based Mapping
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per subject (see figure 2a–c). Images were then exported to an

external workstation in the DICOM format for further analysis.

Four points, arbitrary selected on the endocardial surface, were

manually tracked in all images of six continuous cardiac cycles as

illustrated in figure 2a–c resulting in a 2D model of the cardiac

motion. Since both MRI scanner and EAM system have similar

coordinate system orientation (foot-head, anterior-posterior, and

right-left directions), the geometric orientation of the short axis

plane was extracted from the DICOM data and used to convert

the 2D cardiac motion model into a 3D cardiac motion model

matching the EAM coordinate system orientation. The resulting

motion model was finally linearly interpolated to 60 Hz to match

the temporal resolution of signal measured from the EAM system.

A 3D model of the heart integrating cardiac motion was thus

generated for each four points of all subjects.

3D respiratory motion model creation. Due to the

inherent cardiac motion, direct identification of the respiratory

motion of the heart is difficult using fast real time MRI of the

heart. Therefore, we propose to measure the 1D displacement of

the diaphragm in real time and to use it as a surrogate of the

respiratory-induced heart motion. Real time tracking of the

diaphragm can be performed using a pencil-beam navigator

positioned on the lung/liver interface of the right hemi-diaphragm

[25]. A 1D signal is then reconstructed where the lung/liver

interface can be automatically identified by cross-correlation with

a reference pencil-beam navigator acquired at the beginning of the

scan. The employed real time imaging sequence was designed to

dynamically acquire a pencil-beam navigator (temporal resolu-

tion = 17 ms) followed by a single shot gradient recalled echo

(GRE) acquisition (TR/TE/a= 1.95 ms/0.89 ms/50u, field of

view = 3206320 mm2, spatial resolution = 565 mm2, slice thick-

ness = 10 mm, SENSE acceleration factor = 8, temporal resolu-

tion = 17 ms). We note that images, interleaved between navigator

signals, were discarded. The overall temporal resolution of the

dynamic acquisition was of 34 ms (30 Hz). Example of navigator

signal is shown in Figure 2d. A 3D model of the respiratory motion

was then built as follow. A factor of 0.6 relating navigator motion

and respiratory motion of the heart in foot-head direction was

used [25]. The motions in anterior-posterior and right-left were

simulated by multiplying the foot-head motion by arbitrary factor

of 0.4 and 0.3, respectively. The resulting 3D model was finally

linearly interpolated to 60 Hz to match the signal measured from

the EAM system.

Simulated EAM data. To simulate the time evolution of

catheter location signal recorded by the EAM system, both

respiratory and cardiac motion models were finally combined. A

total of 20 points were simulated (5 volunteers times 4 points).

Since a unique respiratory motion model was simulated for each

subject, the same respiratory motion model was used for the four

points of the same subject.

Accuracy evaluation of the proposed method. Simulated

EAM data were used as input of the proposed algorithms and

cardiac and respiratory motion were estimated. The l parameter

in equation 2 was pre-calibrated (see File S1 and Figure S1) and a

value of 0.7 was used for all simulated datasets. To quantify the

performance of the method, the L2 norm (L2Norm) also referred

to as absolute error, was calculated between the estimated motion

Mest
��!

and the reference motion Mref
��!

for each simulated EAM

point and served as motion estimate accuracy as follows [26]:

L2Norm Mest
��!

,Mref
��!� �

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

j~1

Mest jð Þ{Mref jð Þ
� �2

vuut , ð3Þ

where D defines the number of spatial dimensions considered for

the computation of L2Norm (either D = 1 for 1D accuracy

analysis or D = 3 for 3D accuracy analysis). The L2Norm was then

averaged over all motion estimates (AvL2Norm) to obtain a global

accuracy measure of the method as follows:

AvL2Norm

~
1

NP
:NS

:NT

XNP
:NS

:NT

i~1

L2Norm Mest(i),
����!

Mref (i)
����!� �

,
ð4Þ

where NS ( = 5) is the number of subject, NP ( = 4) is the number of

point per subject, and NT ( = 128) is the number of signal samples

along the temporal dimension. 1D AvL2Norm (D = 1) and 3D

AvL2Norm (D = 3) were computed to evaluate the accuracy of the

proposed method in each spatial dimension and overall in 3D,

respectively. 1D AvL2Norm and 3D AvL2Norm, are reported for

both cardiac and respiratory motion estimates.

E. In vivo Characterization of Cardiac and Respiratory
Motion

Cardiac and respiratory motion was estimated and character-

ized from EAM data obtained from 27 patients (66614 years old,

22 males) with history of ventricular tachycardia who underwent

an electrophysiology study. An average of 1606106 points were

acquired per electro-anatomical map resulting in a total of 4318

EAM points. ECGs of all EAM point were analyzed to identify the

heart rate of the patient during each EAM point acquisition. EAM

points which were not acquired under sinus rhythm (i.e. during

either pacing or arrhythmic events) were identified from ECG

signal and discarded from further motion analysis. The heart rates

of the remaining EAM points were estimated and used to calibrate

the proposed filters. Cardiac and respiratory motion was estimated

for each EAM point. Cardiac motion amplitude over the heart

beat leading the triggering R-wave and respiratory motion

amplitude over the 2.5 s of signal were computed for each EAM

point.

An in house software developed in Matlab (The MathWorks,

Natick, MA) was used for 3D visualization of the motion. To

illustrate the spatial distribution of the motion, amplitude of

cardiac and respiratory motion were color coded on the LV shell

created by the clinical EAM system for each patient. Temporal

evolution of cardiac motion was similarly visualized by measuring

the variation of cardiac motion amplitude through a complete

cardiac cycle (30 cardiac phases). Cardiac motion amplitude

between each cardiac phase and the reference end-diastolic

cardiac phase (corresponding to the triggering R-wave) was

computed and color coded in a separate LV shell.

Quantitative assessment of cardiac and respiratory motion

estimates was performed over all patients. Amplitude of cardiac

and respiratory motion was averaged over all EAM points and is

reported for each patient along with standard deviation. A second

analysis of the respiratory motion was performed where EAM

points acquired in unstable position (in the presence of catheter

manipulation or severe catheter drift) were excluded. Two

exclusion criteria were considered. EAM points with right-left or

anterior-posterior respiratory motion component greater than the

foot-head component were discarded. EAM points with at least

one 1D motion component superior to three standard deviation of

the corresponding 1D average motion component (estimated from

the same patient) were also discarded. Average amplitude over the

remaining EAM points of respiratory motion in 3D and for each

Physiological Motion from Catheter-Based Mapping
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spatial dimension (foot-head, anterior-posterior, right-left) is

reported for each patient.

Results

A. Numerical Simulations
Figure 3 shows example of the estimated cardiac and respiratory

motion in one simulated EAM point. The simulated catheter

motion signal is shown in Figure 4a–c for the three spatial

directions and has been created from the cardiac motion model

(blue curves in figure 3d–f) and the respiratory motion model (blue

curves in figure 3g–i) of one simulated EAM point. Cardiac and

respiratory motion estimates are shown in figure 3d–f and

figure 3g–i (as red curves), respectively. The estimated motion

appeared very similar to the reference one for both cardiac motion

component (3D AvL2Norm = 0.41 mm) and respiratory motion

component (3D AvL2Norm = 0.26 mm). Table 1 presents the

accuracy (AvL2Norm) of cardiac and respiratory motion esti-

mates, respectively, averaged over the 4 simulated EAM points for

each of the 5 subject. The accuracy (1D AvL2Norm) of both

cardiac and respiratory motion estimates was less than 0.4 mm in

any of the three spatial dimensions. The overall accuracy of the

method (3D AvL2Norm) was 0.6760.21 mm and 0.5560.22 mm

for cardiac and respiratory motion estimates, respectively.

B. In vivo Characterization of the Cardiac and Respiratory
Motion

Figure 5 shows the 3D spatial distribution of cardiac and

respiratory motion estimates in 4 patients. Maximum amplitude of

cardiac and respiratory motion and bipolar voltage map is shown

for each patient. Reduced cardiac motion is observed in the scar

area identified from the bipolar voltage map as voltage ,1.5 mV

(see white arrow). In addition cardiac motion amplitude is spatially

smooth demonstrating the spatial coherency of the point-wise

estimates. No spatial trend is observed between bipolar voltage

maps and respiratory motion estimates.

Figure 6 shows the temporal evolution of cardiac motion in a

VT patient through one cardiac cycle. The 3D amplitude of the

estimated cardiac motion is shown for ten cardiac phases using the

end-diastolic cardiac phase as the reference. Spatially uniform

contraction was observed throughout the different cardiac phases.

Maximum cardiac motion amplitude of ,8 mm was found in

most of the ventricle at the systolic phase. No scar was identified

from the bipolar voltage maps in this patient.

Figure 7 shows the maximum amplitude of cardiac and

respiratory motion averaged over all EAM points for each of the

27 patients. 961 EAM points (22%) were identified as being

acquired during an arrhythmic event or during pacing and were

discarded from this motion analysis. In average over all patients,

the mean maximum amplitude of cardiac and respiratory motion

was 10.262.7 mm (min = 5.5, max = 16.9) and 9.962.7 mm

(min = 4.3, max = 16.3), respectively. Intra-patient variability of

maximum amplitude of cardiac and respiratory motion was

3.261.2 mm (min = 1.2, max = 6.6) and 6.863.1 mm (min = 2.2,

max = 16.5).

Maximum amplitude of respiratory motion estimates obtained

after exclusion of EAM points acquired in unstable position is

shown in Figure 8a. 1338 EAM points (31%) were identified as

being acquired under unstable position and were excluded. In

average over all patients, the mean maximum amplitude of

respiratory motion reduced to 8.862.3 mm (min = 4.3,

max = 14.8). Intra-patient variability of maximum respiratory

motion amplitude also reduced to 3.561.8 mm (min = 1.6,

max = 10.4). Respiratory motion amplitude along each of the

Figure 3. Creation of the respiratory and the cardiac motion model. Example of real time images (a, b, c) and right hemi-diaphragm (RHD)
navigator signal (d) acquired in one healthy adult subject. Four points (blue dots in a, b, c) were manually tracked over each 2D image to build up a
model of the cardiac contraction. The RHD motion was used to generate a model of the respiratory motion of the heart.
doi:10.1371/journal.pone.0078852.g003

Physiological Motion from Catheter-Based Mapping
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three spatial dimensions is shown in Figure 8b. In average over all

patients, the foot-head component was the dominant respiratory

motion component with mean amplitude of 7.0461.8 mm,

followed by the anterior-posterior component (3.661.2 mm) and

the right-left component (3.361.2 mm).

Discussion

In this study, we proposed a novel approach to estimate both

cardiac and respiratory motion from EAM data. Accuracy of

cardiac and respiratory motion estimates was 0.6–0.7 mm in

simulations, which is satisfactory for the purpose of data fusion

with MRI. Cardiac motion and respiratory motion were finally

successfully estimated from EAM data of 27 patients undergoing

clinical LV mapping. This proposed EAM point-wise motion

estimation offers a novel tool required for further correction of

cardiac and respiratory motion in EAM maps.

The proposed motion estimation approach was found robust for

a wide range of cardiac rates (1–2 Hz) and respiratory rates (0.1–

0.5 Hz) as typically encountered in patients. However, reduced

accuracy was observed in the presence of elevated respiratory rates

of (0.5–0.7 Hz) with low cardiac rates (,1 Hz). In such case, the

distance between the frequency spectrums of cardiac and

respiratory motion is reduced and leads to spectrum overlap

which are difficult to demodulate using the proposed method.

Due to the limited temporal window of the recorded EAM data

(2.5 s per point), a complete respiratory cycle may not be recorded

for each EAM point. Therefore, the reported respiratory motion

amplitude may underestimate the true respiratory motion

amplitude in some EAM point. Furthermore, respiratory motion

Figure 4. Numerical simulations: estimated cardiac and respiratory motion obtained from one simulated EAM point signal. The
simulated catheter location (a,b,c) was obtained by combining the cardiac motion model (d,e,f, blue) and the respiratory motion model (g,h,i, blue).
Cardiac and respiratory motions were then estimated from the simulated catheter location and are shown in (d,e,f, red) and (g,h,i, red), respectively.
The proposed approach provided an accurate demodulation of cardiac and respiratory motion components in all three spatial dimensions.
doi:10.1371/journal.pone.0078852.g004

Table 1. Accuracy of cardiac and respiratory motion estimation.

Cardiac motion MSE Respiratory motion

RL AP FH 3D RL AP FH 3D

V#1 0.24 0.32 0.29 0.55 0.19 0.25 0.25 0.44

V#2 0.29 0.38 0.38 0.68 0.24 0.30 0.32 0.56

V#3 0.47 0.46 0.57 0.96 0.42 0.39 0.52 0.86

V#4 0.25 0.37 0.34 0.62 0.18 0.29 0.27 0.48

V#5 0.21 0.27 0.32 0.53 0.16 0.19 0.27 0.41

Total 0.29 0.36 0.38 0.67 0.24 0.28 0.33 0.55

Mean square error (MSE) between reference and estimated motion was averaged over all points for each subject. MSE(s) are reported for the three spatial dimensions
(right-left (RL); anterior-posterior (AP); foot-head (FH)) and overall in 3D.
doi:10.1371/journal.pone.0078852.t001
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correction of EAM point requires the identification of the end

expiration position in order to match MRI acquisition conditions.

In such conditions, more sophisticated methods will need to be

developed to identify the end expiratory position which could be

obtained from prior motion knowledge using respiratory motion

model and additional respiratory sensor information. Alternative-

ly, manufacturers of EAM system should consider increasing the

length of the recorded data to improve characterization of

respiratory motion. In addition, since the employed EAM system

does not provide respiratory sensor information for each EAM

point acquisition, the respiratory rate could not easily be extracted

for each EAM point and a fixed respiratory rate of 0.3 Hz was

used to calibrate the multi-band filters. EAM point-wise estimation

of respiratory rate should thus improve the accuracy of motion

estimates and will be investigated in future studies.

This method is designed for future retrospective use in order to

improve offline fusion of LGE-MRI and EAM. In the proposed

approach, the visual inspection of detected R-wave is the only non-

automatic part. This manual procedure took approximately 2

seconds per EAM point which resulted in ,5 min per LV map

which is acceptable for retrospective analysis.

Figure 5. Example estimates of cardiac and respiratory motion from three VT patients. Maximum amplitude of cardiac motion (top row)
and respiratory motion (middle row) are color coded for each EAM point. Voltage maps are shown in the bottom row. Reduced cardiac motion can be
observed in low voltage area (dashed white circles).
doi:10.1371/journal.pone.0078852.g005

Figure 6. Estimated LV cardiac motion for different cardiac phases in a non-ischemic VT patient. Amplitude of the 3D motion between
the end-diastolic phase (j) and each cardiac phase (indicated as a red bar on the ECG signal) is color coded for each EAM point of the original left
ventricle mesh. A significant increase of the cardiac motion is observed in all points near the systolic cardiac phase.
doi:10.1371/journal.pone.0078852.g006
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Empirical rejection criteria, based on statistical distribution and

a-priori knowledge of the motion, were used to identify EAM

points acquired under unstable catheter location. Catheter contact

pressure could offer a more robust approach to identify such EAM

points but was not available in our data. Due to the high

percentage of rejected points, relying solely on the motion of the

ablation catheter may be limited for respiratory motion estimation

in EAM points acquired under unstable catheter position.

Additional information obtained from other catheters such as

the coronary sinus catheter which is not manipulated during the

procedure or pre-built respiratory motion model could help in

improving the robustness of respiratory motion estimates and will

be investigated in future studies. Catheter manipulation is

expected to be mainly represented by low frequencies and thus

to mainly affect the respiratory motion estimates. However, its

impact on cardiac motion estimates was not investigated in this

study.

EAM points, which were not acquired in sinus rhythm, were

discarded from the in vivo motion characterization study. Tachy-

cardia events or pacing generate elevated heart rates and move the

frequency spectrum of the cardiac motion towards high frequen-

cies which is beneficial for the proposed method as shown in

numerical simulations. However, the proposed method was not

evaluated in the presence of abnormal heart rhythm and further

studies needs to be conducted to evaluate the feasibility of motion

estimation/correction in such points.

A trend could be observed between low bipolar voltages and

local spatial variation of cardiac motion in some patients as

suggested in [27]. The presence of scar in the myocardium can

induce local abnormal wall motion contractility; however, this

mechanism is patient specific and related to the scar characteristics

such as its extent or its transmurality level [28]. Further studies are

warranted to investigate the relation between cardiac motion

parameters and electrical parameters obtained during EAM.

Finally, the presented method provides respiratory and cardiac

motion estimates for each EAM point, without the need of

additional imaging modalities such as fluoroscopy. Therefore,

compared to previous approaches [17,19,20], this method thus

does not increase the radiation dose delivered to both patient and

clinical staff. In addition, the method can be used in any clinical

site since it only relies on the use of EAM system that generally

part of the clinical set up of electrophysiology lab.

Conclusion

Cardiac and respiratory motion can be estimated from EAM

data by demodulation of the temporal evolution of the catheter

location. This method does not introduce additional radiation to

patient and staff and can be used in conventional setting of an

electrophysiology laboratory.

Supporting Information

Figure S1 Accuracy of cardiac and motion estimate as a

function of respiratory and cardiac frequency. The 3D average

Figure 7. Cardiac and respiratory motion estimated from
electro-anatomical data recorded in 27 VT patients. The
maximum amplitude of the cardiac motion (a) and respiratory motion
(b) is shown for each patient.
doi:10.1371/journal.pone.0078852.g007

Figure 8. Respiratory motion estimates in EAM points acquired
under stable catheter contact (without catheter manipulation
or catheter drift). (a) Average and standard deviation of maximum
respiratory motion amplitude estimated over all stable EAM points for
each patient. (b) Spatial components of the estimated respiratory
motion. The dominant respiratory component was found to be in the
foot-head direction.
doi:10.1371/journal.pone.0078852.g008
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L2 norm (AvL2Norm) calculated between estimated motion and

reference motion (simulated motion model) was calculated in 3D

and averaged over all tracked points and subjects. Decreased

accuracy is observed in the presence of high respiratory rate

(.0.5 Hz) with low heart rate. The l-value interval of [0.6, 0.8]

provides the best homogeneous high accuracy map (,0.7 mm) for

both cardiac and respiratory motion estimates over a large band of

heart rate (1–2 Hz) and respiratory rate (0.1–0.5 Hz).

(TIF)

File S1 Calibration of the l parameter.

(DOCX)
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