171 research outputs found

    Adler-Kostant-Symes systems as Lagrangian gauge theories

    Full text link
    It is well known that the integrable Hamiltonian systems defined by the Adler-Kostant-Symes construction correspond via Hamiltonian reduction to systems on cotangent bundles of Lie groups. Generalizing previous results on Toda systems, here a Lagrangian version of the reduction procedure is exhibited for those cases for which the underlying Lie algebra admits an invariant scalar product. This is achieved by constructing a Lagrangian with gauge symmetry in such a way that, by means of the Dirac algorithm, this Lagrangian reproduces the Adler-Kostant-Symes system whose Hamiltonian is the quadratic form associated with the scalar product on the Lie algebra.Comment: 10 pages, LaTeX2

    The Search for Arthritis in Antiquity: Paleoarthritis Workshop

    Get PDF

    Dirac quantization of free motion on curved surfaces

    Full text link
    We give an explicit operator realization of Dirac quantization of free particle motion on a surface of codimension 1. It is shown that the Dirac recipe is ambiguous and a natural way of fixing this problem is proposed. We also introduce a modification of Dirac procedure which yields zero quantum potential. Some problems of abelian conversion quantization are pointed out.Comment: 16 page

    The quantum bialgebra associated with the eight-vertex R-matrix

    Full text link
    The quantum bialgebra related to the Baxter's eight-vertex R-matrix is found as a quantum deformation of the Lie algebra of sl(2)-valued automorphic functions on a complex torus.Comment: 4 page

    Gauge transformation and reciprocal link for (2+1)-dimensional integrable field systems

    Full text link
    Appropriate restrictions of Lax operators which allows to construction of (2+1)-dimensional integrable field systems, coming from centrally extended algebra of pseudo-differential operators, are reviewed. The gauge transformation and the reciprocal link between three classes of Lax hierarchies are established.Comment: to appear in J. Nonl. Math. Phys., 12 page

    "Doubled" generalized Landau-Lifshiz hierarchies and special quasigraded Lie algebras

    Full text link
    Using special quasigraded Lie algebras we obtain new hierarchies of integrable nonlinear vector equations admitting zero-curvature representations. Among them the most interesting is extension of the generalized Landau-Lifshitz hierarchy which we call "doubled" generalized Landau-Lifshiz hierarchy. This hierarchy can be also interpreted as an anisotropic vector generalization of "modified" Sine-Gordon hierarchy or as a very special vector generalization of so(3) anisotropic chiral field hierarchy.Comment: 16 pages, no figures, submitted to Journal of Physics

    Dirac method and symplectic submanifolds in the cotangent bundle of a factorizable Lie group

    Get PDF
    In this work we study some symplectic submanifolds in the cotangent bundle of a factorizable Lie group defined by second class constraints. By applying the Dirac method, we study many issues of these spaces as fundamental Dirac brackets, symmetries, and collective dynamics. This last item allows to study integrability as inherited from a system on the whole cotangent bundle, leading in a natural way to the AKS theory for integrable systems

    Three natural mechanical systems on Stiefel varieties

    Full text link
    We consider integrable generalizations of the spherical pendulum system to the Stiefel variety V(n,r)=SO(n)/SO(n−r)V(n,r)=SO(n)/SO(n-r) for a certain metric. For the case of V(n,2) an alternative integrable model of the pendulum is presented. We also describe a system on the Stiefel variety with a four-degree potential. The latter has invariant relations on T∗V(n,r)T^*V(n,r) which provide the complete integrability of the flow reduced on the oriented Grassmannian variety G+(n,r)=SO(n)/SO(r)×SO(n−r)G^+(n,r)=SO(n)/SO(r)\times SO(n-r).Comment: 14 page

    Versal deformations of a Dirac type differential operator

    Full text link
    If we are given a smooth differential operator in the variable x∈R/2πZ,x\in {\mathbb R}/2\pi {\mathbb Z}, its normal form, as is well known, is the simplest form obtainable by means of the \mbox{Diff}(S^1)-group action on the space of all such operators. A versal deformation of this operator is a normal form for some parametric infinitesimal family including the operator. Our study is devoted to analysis of versal deformations of a Dirac type differential operator using the theory of induced \mbox{Diff}(S^1)-actions endowed with centrally extended Lie-Poisson brackets. After constructing a general expression for tranversal deformations of a Dirac type differential operator, we interpret it via the Lie-algebraic theory of induced \mbox{Diff}(S^1)-actions on a special Poisson manifold and determine its generic moment mapping. Using a Marsden-Weinstein reduction with respect to certain Casimir generated distributions, we describe a wide class of versally deformed Dirac type differential operators depending on complex parameters

    Tri-hamiltonian vector fields, spectral curves and separation coordinates

    Full text link
    We show that for a class of dynamical systems, Hamiltonian with respect to three distinct Poisson brackets (P_0, P_1, P_2), separation coordinates are provided by the common roots of a set of bivariate polynomials. These polynomials, which generalise those considered by E. Sklyanin in his algebro-geometric approach, are obtained from the knowledge of: (i) a common Casimir function for the two Poisson pencils (P_1 - \lambda P_0) and (P_2 - \mu P_0); (ii) a suitable set of vector fields, preserving P_0 but transversal to its symplectic leaves. The frameworks is applied to Lax equations with spectral parameter, for which not only it unifies the separation techniques of Sklyanin and of Magri, but also provides a more efficient ``inverse'' procedure not involving the extraction of roots.Comment: 49 pages Section on reduction revisite
    • 

    corecore