research

Versal deformations of a Dirac type differential operator

Abstract

If we are given a smooth differential operator in the variable xR/2πZ,x\in {\mathbb R}/2\pi {\mathbb Z}, its normal form, as is well known, is the simplest form obtainable by means of the \mbox{Diff}(S^1)-group action on the space of all such operators. A versal deformation of this operator is a normal form for some parametric infinitesimal family including the operator. Our study is devoted to analysis of versal deformations of a Dirac type differential operator using the theory of induced \mbox{Diff}(S^1)-actions endowed with centrally extended Lie-Poisson brackets. After constructing a general expression for tranversal deformations of a Dirac type differential operator, we interpret it via the Lie-algebraic theory of induced \mbox{Diff}(S^1)-actions on a special Poisson manifold and determine its generic moment mapping. Using a Marsden-Weinstein reduction with respect to certain Casimir generated distributions, we describe a wide class of versally deformed Dirac type differential operators depending on complex parameters

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019