If we are given a smooth differential operator in the variable x∈R/2πZ, its normal form, as is well known, is the simplest form
obtainable by means of the \mbox{Diff}(S^1)-group action on the space of all
such operators. A versal deformation of this operator is a normal form for some
parametric infinitesimal family including the operator. Our study is devoted to
analysis of versal deformations of a Dirac type differential operator using the
theory of induced \mbox{Diff}(S^1)-actions endowed with centrally extended
Lie-Poisson brackets. After constructing a general expression for tranversal
deformations of a Dirac type differential operator, we interpret it via the
Lie-algebraic theory of induced \mbox{Diff}(S^1)-actions on a special Poisson
manifold and determine its generic moment mapping. Using a Marsden-Weinstein
reduction with respect to certain Casimir generated distributions, we describe
a wide class of versally deformed Dirac type differential operators depending
on complex parameters