research

Adler-Kostant-Symes systems as Lagrangian gauge theories

Abstract

It is well known that the integrable Hamiltonian systems defined by the Adler-Kostant-Symes construction correspond via Hamiltonian reduction to systems on cotangent bundles of Lie groups. Generalizing previous results on Toda systems, here a Lagrangian version of the reduction procedure is exhibited for those cases for which the underlying Lie algebra admits an invariant scalar product. This is achieved by constructing a Lagrangian with gauge symmetry in such a way that, by means of the Dirac algorithm, this Lagrangian reproduces the Adler-Kostant-Symes system whose Hamiltonian is the quadratic form associated with the scalar product on the Lie algebra.Comment: 10 pages, LaTeX2

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 05/06/2019