We show that for a class of dynamical systems, Hamiltonian with respect to
three distinct Poisson brackets (P_0, P_1, P_2), separation coordinates are
provided by the common roots of a set of bivariate polynomials. These
polynomials, which generalise those considered by E. Sklyanin in his
algebro-geometric approach, are obtained from the knowledge of: (i) a common
Casimir function for the two Poisson pencils (P_1 - \lambda P_0) and (P_2 - \mu
P_0); (ii) a suitable set of vector fields, preserving P_0 but transversal to
its symplectic leaves. The frameworks is applied to Lax equations with spectral
parameter, for which not only it unifies the separation techniques of Sklyanin
and of Magri, but also provides a more efficient ``inverse'' procedure not
involving the extraction of roots.Comment: 49 pages Section on reduction revisite