90 research outputs found

    Numerical characterization of cohesive and non-cohesive 'sediments' under different consolidation states using 3D DEM triaxial experiments

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Elyashiv, H., Bookman, R., Siemann, L., ten Brink, U., & Huhn, K. Numerical characterization of cohesive and non-cohesive 'sediments' under different consolidation states using 3D DEM triaxial experiments. Processes, 8(10), (2020): 1252, doi:10.3390/pr8101252.The Discrete Element Method has been widely used to simulate geo-materials due to time and scale limitations met in the field and laboratories. While cohesionless geo-materials were the focus of many previous studies, the deformation of cohesive geo-materials in 3D remained poorly characterized. Here, we aimed to generate a range of numerical ‘sediments’, assess their mechanical response to stress and compare their response with laboratory tests, focusing on differences between the micro- and macro-material properties. We simulated two endmembers—clay (cohesive) and sand (cohesionless). The materials were tested in a 3D triaxial numerical setup, under different simulated burial stresses and consolidation states. Variations in particle contact or individual bond strengths generate first order influence on the stress–strain response, i.e., a different deformation style of the numerical sand or clay. Increased burial depth generates a second order influence, elevating peak shear strength. Loose and dense consolidation states generate a third order influence of the endmember level. The results replicate a range of sediment compositions, empirical behaviors and conditions. We propose a procedure to characterize sediments numerically. The numerical ‘sediments’ can be applied to simulate processes in sediments exhibiting variations in strength due to post-seismic consolidation, bioturbation or variations in sedimentation rates.This research received no external funding

    Impact of earthquakes on agriculture during the Roman–Byzantine period from pollen records of the Dead Sea laminated sediment

    Get PDF
    The Dead Sea region holds the archives of a complex relationship between an ever-changing nature and ancient civilisations. Regional pollen diagrams show a Roman–Byzantine period standing out in the recent millennia by its wetter climate that allowed intensive arboriculture. During that period, the Dead Sea formed laminites that display mostly a seasonal character. A multidisciplinary study focused on two earthquakes, 31 BC and AD 363, recorded as seismites in the Ze’elim gully A unit III which has been well dated by radiocarbon in a previous study. The sampling of the sediment was done at an annual resolution starting from a few years before and finishing a decade after each earthquake. A clear drop in agricultural indicators (especially Olea and cereals) is shown. These pollen indicators mostly reflect human activities in the Judean Hills and coastal oases. Agriculture was disturbed in large part of the rift valley where earthquake damage affected irrigation and access to the fields. It took 4 to 5 yr to resume agriculture to previous conditions. Earthquakes must be seen as contributors to factors damaging societies. If combined with other factors such as climatic aridification, disease epidemics and political upheaval, they may lead to civilisation collapse

    Preliminary Report: Missense mutations in the APOL gene family are associated with end stage kidney disease risk previously attributed to the MYH9 gene

    Get PDF
    MYH9 has been proposed as a major genetic risk locus for a spectrum of non-diabetic end stage kidney disease (ESKD). We use recently released sequences from the 1000 Genomes Project to identify two western African specific missense mutations (S342G and I384M) in the neighbouring APOL1 gene, and demonstrate that these are more strongly associated with ESKD than previously reported MYH9 variants. We also show that the distribution of these risk variants in African populations is consistent with the pattern of African ancestry ESKD risk previously attributed to the MYH9 gene. Additional associations were also found among other members of the APOL gene family, and we propose that ESKD risk is caused by western African variants in members of the APOL gene family, which evolved to confer protection against pathogens, such as Trypanosoma.Comment: 25 pages, 6 figure

    Transcriptional Regulation by CHIP/LDB Complexes

    Get PDF
    It is increasingly clear that transcription factors play versatile roles in turning genes “on” or “off” depending on cellular context via the various transcription complexes they form. This poses a major challenge in unraveling combinatorial transcription complex codes. Here we use the powerful genetics of Drosophila combined with microarray and bioinformatics analyses to tackle this challenge. The nuclear adaptor CHIP/LDB is a major developmental regulator capable of forming tissue-specific transcription complexes with various types of transcription factors and cofactors, making it a valuable model to study the intricacies of gene regulation. To date only few CHIP/LDB complexes target genes have been identified, and possible tissue-dependent crosstalk between these complexes has not been rigorously explored. SSDP proteins protect CHIP/LDB complexes from proteasome dependent degradation and are rate-limiting cofactors for these complexes. By using mutations in SSDP, we identified 189 down-stream targets of CHIP/LDB and show that these genes are enriched for the binding sites of APTEROUS (AP) and PANNIER (PNR), two well studied transcription factors associated with CHIP/LDB complexes. We performed extensive genetic screens and identified target genes that genetically interact with components of CHIP/LDB complexes in directing the development of the wings (28 genes) and thoracic bristles (23 genes). Moreover, by in vivo RNAi silencing we uncovered novel roles for two of the target genes, xbp1 and Gs-alpha, in early development of these structures. Taken together, our results suggest that loss of SSDP disrupts the normal balance between the CHIP-AP and the CHIP-PNR transcription complexes, resulting in down-regulation of CHIP-AP target genes and the concomitant up-regulation of CHIP-PNR target genes. Understanding the combinatorial nature of transcription complexes as presented here is crucial to the study of transcription regulation of gene batteries required for development

    Accuracy of Capsule Colonoscopy in Detecting Colorectal Polyps in a Screening Population

    Get PDF
    BACKGROUND & AIMS: Capsule colonoscopy is a minimally invasive imaging method. We measured the accuracy of this technology in detecting polyps 6 mm or larger in an average-risk screening population. METHODS: In a prospective study, asymptomatic subjects (n = 884) underwent capsule colonoscopy followed by conventional colonoscopy (the reference) several weeks later, with an endoscopist blinded to capsule results, at 10 centers in the United States and 6 centers in Israel from June 2011 through April 2012. An unblinded colonoscopy was performed on subjects found to have lesions 6 mm or larger by capsule but not conventional colonoscopy. RESULTS: Among the 884 subjects enrolled, 695 (79%) were included in the analysis of capsule performance for all polyps. There were 77 exclusions (9%) for inadequate cleansing and whole-colon capsule transit time fewer than 40 minutes, 45 exclusions (5%) before capsule ingestion, 15 exclusions (2%) after ingestion and before colonoscopy, and 15 exclusions (2%) for site termination. Capsule colonoscopy identified subjects with 1 or more polyps 6 mm or larger with 81% sensitivity (95% confidence interval [CI], 77%-84%) and 93% specificity (95% CI, 91%-95%), and polyps 10 mm or larger with 80% sensitivity (95% CI, 74%-86%) and 97% specificity (95% CI, 96%-98%). Capsule colonoscopy identified subjects with 1 or more conventional adenomas 6 mm or larger with 88% sensitivity (95% CI, 82%-93) and 82% specificity (95% CI, 80%-83%), and 10 mm or larger with 92% sensitivity (95% CI, 82%-97%) and 95% specificity (95% CI, 94%-95%). Sessile serrated polyps and hyperplastic polyps accounted for 26% and 37%, respectively, of false-negative findings from capsule analyses. CONCLUSIONS: In an average-risk screening population, technically adequate capsule colonoscopy identified individuals with 1 or more conventional adenomas 6 mm or larger with 88% sensitivity and 82% specificity. Capsule performance seems adequate for patients who cannot undergo colonoscopy or who had incomplete colonoscopies. Additional studies are needed to improve capsule detection of serrated lesions. Clinicaltrials.gov number: NCT01372878

    Colorectal cancer incidences in Lynch syndrome: a comparison of results from the prospective lynch syndrome database and the international mismatch repair consortium

    Get PDF
    Objective To compare colorectal cancer (CRC) incidences in carriers of pathogenic variants of the MMR genes in the PLSD and IMRC cohorts, of which only the former included mandatory colonoscopy surveillance for all participants. Methods CRC incidences were calculated in an intervention group comprising a cohort of confirmed carriers of pathogenic or likely pathogenic variants in mismatch repair genes (path_MMR) followed prospectively by the Prospective Lynch Syndrome Database (PLSD). All had colonoscopy surveillance, with polypectomy when polyps were identified. Comparison was made with a retrospective cohort reported by the International Mismatch Repair Consortium (IMRC). This comprised confirmed and inferred path_MMR carriers who were first- or second-degree relatives of Lynch syndrome probands. Results In the PLSD, 8,153 subjects had follow-up colonoscopy surveillance for a total of 67,604 years and 578 carriers had CRC diagnosed. Average cumulative incidences of CRC in path_MLH1 carriers at 70 years of age were 52% in males and 41% in females; for path_MSH2 50% and 39%; for path_MSH6 13% and 17% and for path_PMS2 11% and 8%. In contrast, in the IMRC cohort, corresponding cumulative incidences were 40% and 27%; 34% and 23%; 16% and 8% and 7% and 6%. Comparing just the European carriers in the two series gave similar findings. Numbers in the PLSD series did not allow comparisons of carriers from other continents separately. Cumulative incidences at 25 years were < 1% in all retrospective groups. Conclusions Prospectively observed CRC incidences (PLSD) in path_MLH1 and path_MSH2 carriers undergoing colonoscopy surveillance and polypectomy were higher than in the retrospective (IMRC) series, and were not reduced in path_MSH6 carriers. These findings were the opposite to those expected. CRC point incidence before 50 years of age was reduced in path_PMS2 carriers subjected to colonoscopy, but not significantly so

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF
    corecore