24 research outputs found
Identification and characterization of an irreversible inhibitor of CDK2
Irreversible inhibitors that modify cysteine or lysine
residues within a protein kinase ATP binding site offer, through their distinctive mode of action, an alternative to ATP-competitive agents. 4-((6-(Cyclohexylmethoxy)-
9H-purin-2-yl)amino)benzenesulfonamide (NU6102) is a potent and selective ATP-competitive inhibitor of CDK2 in which the sulfonamide moiety is positioned close to a pair of lysine residues. Guided by the CDK2/NU6102 structure, we designed 6-(cyclohexylmethoxy)-N-(4-(vinylsulfonyl)phenyl)-9H-purin-2-amine (NU6300), which binds covalently to CDK2 as shown by a co-complex crystal
structure. Acute incubation with NU6300 produced a durable inhibition of Rb phosphorylation in SKUT-1B cells, consistent with it acting as an irreversible CDK2 inhibitor. NU6300 is the first covalent CDK2 inhibitor to be described, and illustrates the potential of vinyl sulfones for the design of more potent and selective compounds
Parallel Optimisation of Potency and Pharmacokinetics Leading to the Discovery of a Pyrrole Carboxamide ERK5 Chemical Tool
[Image: see text] The nonclassical extracellular signal-related kinase 5 (ERK5) mitogen-activated protein kinase pathway has been implicated in increased cellular proliferation, migration, survival, and angiogenesis; hence, ERK5 inhibition may be an attractive approach for cancer treatment. However, the development of selective ERK5 inhibitors has been challenging. Previously, we described the development of a pyrrole carboxamide high-throughput screening hit into a selective, submicromolar inhibitor of ERK5 kinase activity. Improvement in the ERK5 potency was necessary for the identification of a tool ERK5 inhibitor for target validation studies. Herein, we describe the optimization of this series to identify nanomolar pyrrole carboxamide inhibitors of ERK5 incorporating a basic center, which suffered from poor oral bioavailability. Parallel optimization of potency and in vitro pharmacokinetic parameters led to the identification of a nonbasic pyrazole analogue with an optimal balance of ERK5 inhibition and oral exposure
Recommended from our members
Efficacious N-protection of O-aryl sulfamates with 2,4-dimethoxybenzyl groups
Sulfamates are important functional groups in certain areas of current medicinal chemistry and drug
development. Alcohols and phenols are generally converted into the corresponding primary sulfamates (ROSO2NH2 and ArOSO2NH2, respectively) by reaction with sulfamoyl chloride (H2NSO2Cl). The lability of the O-sulfamate group, especially to basic conditions, usually restricts this method to a later stage of a synthesis. To enable a more flexible approach to the synthesis of phenolic O-sulfamates, a protecting group strategy for sulfamates has been developed. Both sulfamate NH protons were replaced with either 4-methoxybenzyl or 2,4-dimethoxybenzyl. These N-protected sulfamates were stable to oxidising and reducing agents, as well as bases and nucleophiles, thus rendering such masked sulfamates
suitable for multi-step synthesis.
The protected sulfamates were synthesised by microwave heating of 1,1′-sulfonylbis(2-methyl-1H-imidazole) with a substituted phenol to give an aryl 2-methyl-1Himidazole-1-sulfonate. This imidazole-sulfonate was N-methylated by reaction with trimethyloxonium tetrafluoroborate, which enabled subsequent displacement of 1,2-dimethylimidazole by a dibenzylamine (e.g. bis-2,4-dimethoxybenzylamine). The resulting N-diprotected, ring-substituted phenol O-sulfamates were further manipulated through reactions at the aryl substituent and finally deprotected with trifluoroacetic acid to afford a phenol O-sulfamate. The use of 2,4-dimethoxybenzyl was particularly attractive because deprotection occurred quantitatively within 2 h at room temperature with 10% trifluoroacetic acid in dichloromethane. The four key steps in the protocol described [reaction of 1,1′-sulfonylbis(2-methyl-1H-imidazole) with a phenol, methylation, displacement with a dibenzylamine and deprotection] all proceeded in very high yields
Design and synthesis of biphenyl and biphenyl ether inhibitors of sulfatases
Inhibitors of sulfatase-2 are putative anticancer agents, but the discovery of potent small molecules targeting this enzyme has proved challenging. Based on molecular modelling, two series of sulfatase-2 inhibitors have been developed with biphenyl and biphenyl ether scaffolds judiciously substituted with sulfamate, carboxylate and other polar groups (e.g. amino). Inhibition of aryl sulfatase A and B was also determined. The biphenyl ether derivatives were less selective for sulfatase-2 over aryl sulfatase B than the biphenyl series. All biphenyl ether derivatives inhibited aryl sulfatase A, whereas only amino derivatives inhibited aryl sulfatase B significantly. In the biphenyl series few derivatives exhibited activity against aryl sulfatase B. The trichloroethylsulfamate group was identified as a new pharmacophore enabling potent inhibition of all of the sulfatases studied
Innovative In Silico Approaches to Address Avian Flu Using Grid Technology
The recent years have seen the emergence of diseases which have spread very quickly all around the world either through human travels like SARS or animal migration like avian flu. Among the biggest challenges raised by infectious emerging diseases, one is related to the constant mutation of the viruses which turns them into continuously moving targets for drug and vaccine discovery. Another challenge is related to the early detection and surveillance of the diseases as new cases can appear just anywhere due to the globalization of exchanges and the circulation of people and animals around the earth, as recently demonstrated by the avian flu epidemics. For 3 years now, a collaboration of teams in Europe and Asia has been exploring some innovative in silico approaches to better tackle avian flu taking advantage of the very large computing resources available on international grid infrastructures. Grids were used to study the impact of mutations on the effectiveness of existing drugs against H5N1 and to find potentially new leads active on mutated strains. Grids allow also the integration of distributed data in a completely secured way. The paper proposes new approaches for the integration of existing data sources towards a global surveillance network for molecular epidemiology and in silico drug discovery