65 research outputs found

    Fungal allergy and pathogenicity

    Get PDF

    Display of E. coli Alkaline Phosphatase pIII or pVIII Fusions on Phagemid Surfaces Reveals Monovalent Decoration with Active Molecules

    Get PDF
    Active alkaline phosphatase of Escherichia coli (PhoA, EC 3.1.3.1) was displayed via the leucine zipper element of the Jun-Fos heterodimer on the surface of filamentous phage and the kinetic parameters Km and kcat were determined. The phoA gene was cloned downstream of fos while jun was inserted upstream of pIII or pVIII, alternatively, in the pJuFo phagemid vector. Both fusion genes are regulated by independent lacZ promoters. PhoA displayed on the phagemid pIII surface exhibited a Km of 11.2 µM with 4-nitrophenyl phosphate as substrate, which is consistent with data published for soluble PhoA. Based on these data we calculated the decoration of pJuFo phagemid with PhoA using the minor and major coat proteins pIII and pVIII as fusion partners under variable inducing conditions. We found that, even if the promoters are fully induced at a concentration of 1000 µM IPTG, the phagemids display maximally one copy of PhoA-Fos-Jun-coat protein fusion, irrespective of whether the protein is presented via pIII or pVIII. However, since PhoA is displayed in a native-like fashion, as deduced from the kinetic parameters of the enzymatic reaction, the pJuFo technology provides a versatile tool for the functional screening of complex cDNA libraries displayed on the phagemids' surface

    Display of E. coli Alkaline Phosphatase pIII or pVIII Fusions on Phagemid Surfaces Reveals Monovalent Decoration with Active Molecules

    Get PDF
    Active alkaline phosphatase of Escherichia coli (PhoA, EC 3.1.3.1) was displayed via the leucine zipper element of the Jun-Fos heterodimer on the surface of filamentous phage and the kinetic parameters Km and kcat were determined. The phoA gene was cloned downstream of fos while jun was inserted upstream of pIII or pVIII, alternatively, in the pJuFo phagemid vector. Both fusion genes are regulated by independent lacZ promoters. PhoA displayed on the phagemid pIII surface exhibited a Km of 11.2 µM with 4-nitrophenyl phosphate as substrate, which is consistent with data published for soluble PhoA. Based on these data we calculated the decoration of pJuFo phagemid with PhoA using the minor and major coat proteins pIII and pVIII as fusion partners under variable inducing conditions. We found that, even if the promoters are fully induced at a concentration of 1000 µM IPTG, the phagemids display maximally one copy of PhoA-Fos-Jun-coat protein fusion, irrespective of whether the protein is presented via pIII or pVIII. However, since PhoA is displayed in a native-like fashion, as deduced from the kinetic parameters of the enzymatic reaction, the pJuFo technology provides a versatile tool for the functional screening of complex cDNA libraries displayed on the phagemids' surface

    Through the labyrinth of yesteryears

    Get PDF
    Background Allergy to dog (Canis familiaris) is a worldwide common cause of asthma and allergic rhinitis. However, dander extract in routine diagnostics is not an optimal predictor of IgE-mediated dog allergy. Our objective was to evaluate saliva as an allergen source for improved diagnostics of allergy to dog. Methods IgE-binding proteins in dog saliva and dander extract were analysed by immunoblot and mass spectrometry (LC-MS/MS) using pooled or individual sera from dog-allergic patients (n=13). Sera from 59 patients IgE positive to dander and 55 patients IgE negative to dander but with symptoms to dog were analysed for IgE against saliva and dander by ELISA. Basophil stimulation with dog saliva and dander extract was measured by flow cytometry among three dog-allergic patients. Additionally, IgE-binding protein profiles of saliva from different breeds were investigated by immunoblot. Results Greater number and diversity of IgE-binding proteins was found in saliva compared to dander extract and varied among dog breeds. In saliva, Can f 1, 2, 3 and 6 were identified but also four new saliva allergen candidates. The majority of the 59 dog danderpositive sera (n=44) were IgE positive to dog saliva. Among patients IgE negative to dander, but with symptoms to dog, 20% were IgE positive to saliva. The biological activity of saliva was confirmed by basophil degranulation. Conclusions Dog saliva is an allergen source for improved diagnostics of dog allergy. The IgE-binding protein profile of saliva from different dogs varies.Supplementary material: [http://cherry.chem.bg.ac.rs/handle/123456789/3488

    Immune Responses in Healthy and Allergic Individuals Are Characterized by a Fine Balance between Allergen-specific T Regulatory 1 and T Helper 2 Cells

    Get PDF
    The mechanisms by which immune responses to nonpathogenic environmental antigens lead to either allergy or nonharmful immunity are unknown. Single allergen-specific T cells constitute a very small fraction of the whole CD4+ T cell repertoire and can be isolated from the peripheral blood of humans according to their cytokine profile. Freshly purified interferon-γ–, interleukin (IL)-4–, and IL-10–producing allergen-specific CD4+ T cells display characteristics of T helper cell (Th)1-, Th2-, and T regulatory (Tr)1–like cells, respectively. Tr1 cells consistently represent the dominant subset specific for common environmental allergens in healthy individuals; in contrast, there is a high frequency of allergen-specific IL-4–secreting T cells in allergic individuals. Tr1 cells use multiple suppressive mechanisms, IL-10 and TGF-β as secreted cytokines, and cytotoxic T lymphocyte antigen 4 and programmed death 1 as surface molecules. Healthy and allergic individuals exhibit all three allergen-specific subsets in different proportions, indicating that a change in the dominant subset may lead to allergy development or recovery. Accordingly, blocking the suppressor activity of Tr1 cells or increasing Th2 cell frequency enhances allergen-specific Th2 cell activation ex vivo. These results indicate that the balance between allergen-specific Tr1 cells and Th2 cells may be decisive in the development of allergy

    In Vitro Evolution of Allergy Vaccine Candidates, with Maintained Structure, but Reduced B Cell and T Cell Activation Capacity

    Get PDF
    Allergy and asthma to cat (Felis domesticus) affects about 10% of the population in affluent countries. Immediate allergic symptoms are primarily mediated via IgE antibodies binding to B cell epitopes, whereas late phase inflammatory reactions are mediated via activated T cell recognition of allergen-specific T cell epitopes. Allergen-specific immunotherapy relieves symptoms and is the only treatment inducing a long-lasting protection by induction of protective immune responses. The aim of this study was to produce an allergy vaccine designed with the combined features of attenuated T cell activation, reduced anaphylactic properties, retained molecular integrity and induction of efficient IgE blocking IgG antibodies for safer and efficacious treatment of patients with allergy and asthma to cat. The template gene coding for rFel d 1 was used to introduce random mutations, which was subsequently expressed in large phage libraries. Despite accumulated mutations by up to 7 rounds of iterative error-prone PCR and biopanning, surface topology and structure was essentially maintained using IgE-antibodies from cat allergic patients for phage enrichment. Four candidates were isolated, displaying similar or lower IgE binding, reduced anaphylactic activity as measured by their capacity to induce basophil degranulation and, importantly, a significantly lower T cell reactivity in lymphoproliferative assays compared to the original rFel d 1. In addition, all mutants showed ability to induce blocking antibodies in immunized mice.The approach presented here provides a straightforward procedure to generate a novel type of allergy vaccines for safer and efficacious treatment of allergic patients

    Correlating IgE reactivity with three-dimensional structure.

    No full text
    This Commentary discusses the work of Neudecker et al. in this issue of the Biochemical Journal in which site-directed mutagenesis and NMR spectroscopy have been used to analyse in detail the IgE-binding capacity of two cross-reactive allergens: Apg1.0101 from celery ( Apium graveolens ) and Pru av 1 from cherry ( Prunus avium ), which are both members of the pathogenesis-related allergen family. The study, showing that the IgE-binding epitopes are highly patient specific, will have a profound impact on our understanding of conformational IgE-binding epitopes, raising serious questions about the therapeutic usefulness of conventional site-directed-mutagenic approaches for the production of hypo-allergenic protein variants

    Structural aspects of fungal allergens

    No full text
    Despite the increasing number of solved crystal structures of allergens, the key question why some proteins are allergenic and the vast majority is not remains unanswered. The situation is not different for fungal allergens which cover a wide variety of proteins with different chemical properties and biological functions. They cover enzymes, cell wall, secreted, and intracellular proteins which, except cross-reactive allergens, does not show any evidence for structural similarities at least at the three-dimensional level. However, from a diagnostic point of view, pure allergens biotechnologically produced by recombinant technology can provide us, in contrast to fungal extracts which are hardly producible as standardized reagents, with highly pure perfectly standardized diagnostic reagents
    corecore