212 research outputs found

    In situ observations of velocity changes in response to tidal deformation from analysis of the high-frequency ambient wavefield

    Get PDF
    We report systematic seismic velocity variations in response to tidal deformation. Measurements are made on correlation functions of the ambient seismic wavefield at 2–8 Hz recorded by a dense array at the site of the Piñon Flat Observatory, Southern California. The key observation is the dependence of the response on the component of wave motion and coda lapse time τ. Measurements on the vertical correlation component indicate reduced wave speeds during periods of volumetric compression, whereas data from horizontal components show the opposite behavior, compatible with previous observations. These effects are amplified by the directional sensitivities of the different surface wave types constituting the early coda of vertical and horizontal correlation components to the anisotropic behavior of the compliant layer. The decrease of the velocity (volumetric) strain sensitivity S_θ with τ indicates that this response is constrained to shallow depths. The observed velocity dependence on strain implies nonlinear behavior, but conclusions regarding elasticity are more ambiguous. The anisotropic response is possibly associated with inelastic dilatancy of the unconsolidated, low-velocity material above the granitic basement. However, equal polarity of vertical component velocity changes and deformation in the vertical direction indicate that a nonlinear Poisson effect is similarly compatible with the observed response pattern. Peak relative velocity changes at small τ are 0.03%, which translates into an absolute velocity strain sensitivity of S_θ≈5 × 10^3 and a stress sensitivity of 0.5 MPa^(−1). The potentially evolving velocity strain sensitivity of crustal and fault zone materials can be studied with the method introduced here

    Cycloisomerization of Dienynes by a Planar-chiral Gold(I) Complex

    Get PDF
    International audienc

    Monte Carlo study of coaxially gated CNTFETs: capacitive effects and dynamic performance

    Get PDF
    Carbon Nanotube (CNT) appears as a promising candidate to shrink field-effect transistors (FET) to the nanometer scale. Extensive experimental works have been performed recently to develop the appropriate technology and to explore DC characteristics of carbon nanotube field effect transistor (CNTFET). In this work, we present results of Monte Carlo simulation of a coaxially gated CNTFET including electron-phonon scattering. Our purpose is to present the intrinsic transport properties of such material through the evaluation of electron mean-free-path. To highlight the potential of high performance level of CNTFET, we then perform a study of DC characteristics and of the impact of capacitive effects. Finally, we compare the performance of CNTFET with that of Si nanowire MOSFET.Comment: 15 pages, 14 figures, final version to be published in C. R. Acad. Sci. Pari

    Chemistry at Boron: Synthesis and Properties of Red to Near-IR Fluorescent Dyes Based on Boron-Substituted Diisoindolomethene Frameworks

    Get PDF
    A general method for the synthesis of difluorobora-diisoindolomethene dyes with phenyl, p-anisole, or ethyl-thiophene substituents has been developed. The nature of the substituents allows modulation of the fluorescence from 650 to 780 nm. Replacement of the fluoro ligands by ethynyl-aryl or ethyl residues is facile using Grignard reagents. Several X-ray molecular structures have been determined, allowing establishment of structure–fluorescence relationships. When the steric crowding around the boron center is severe, the aromatic substituents α to the diisoindolomethene nitrogens are twisted out of coplanarity, and hypsochromic shifts are observed in the absorption and emission spectra. This shift reached 91 nm with ethyl substituents compared to fluoro groups. When ethynyl linkers are used, the core remains flat, and a bathochromic shift is observed. All the fluorophores exhibit relatively high quantum yields for emitters in the 650–800 nm region. When perylene or pyrene residues are connected to the dyes, almost quantitative energy transfer from them to the dye core occurs, providing large virtual Stokes shifts spanning from 8000 to 13 000 cm–1 depending on the nature of the dye. All the dyes are redox active, providing the Bodipy radical cation and anion in a reversible manner. Stepwise reduction or oxidation to the dication and dianion is feasible at higher potentials. We contend that the present work paves the way for the development of a new generation of stable, functionalized luminophores for bioanalytical applications

    Selective involvement of serum response factor in pressure-induced myogenic tone in resistance arteries

    Get PDF
    OBJECTIVE: In resistance arteries, diameter adjustment in response to pressure changes depends on the vascular cytoskeleton integrity. Serum response factor (SRF) is a dispensable transcription factor for cellular growth, but its role remains unknown in resistance arteries. We hypothesized that SRF is required for appropriate microvascular contraction. METHODS AND RESULTS: We used mice in which SRF was specifically deleted in smooth muscle or endothelial cells, and their control. Myogenic tone and pharmacological contraction was determined in resistance arteries. mRNA and protein expression were assessed by quantitative real-time PCR (qRT-PCR) and Western blot. Actin polymerization was determined by confocal microscopy. Stress-activated channel activity was measured by patch clamp. Myogenic tone developing in response to pressure was dramatically decreased by SRF deletion (5.9+/-2.3%) compared with control (16.3+/-3.2%). This defect was accompanied by decreases in actin polymerization, filamin A, myosin light chain kinase and myosin light chain expression level, and stress-activated channel activity and sensitivity in response to pressure. Contractions induced by phenylephrine or U46619 were not modified, despite a higher sensitivity to p38 blockade; this highlights a compensatory pathway, allowing normal receptor-dependent contraction. CONCLUSIONS: This study shows for the first time that SRF has a major part to play in the control of local blood flow via its central role in pressure-induced myogenic tone in resistance arteries

    Manganese oxide-based catalysts for toluene oxidation

    Get PDF
    Four different catalysts based on manganese oxide were prepared: a perovskite (LaMnO3), via sol-gel method; Mn2O3, rapid method and an Octahedral Molecular Sieve (OMS-2) by two different preparation methods, via solid state (OMSs) and hydrothermal method (OMSh). The physicochemical properties of these catalysts were characterized by X-ray diffraction (XRD), N2 adsorption–desorption at −196 °C, thermogravimetric and differential thermal analysis (TGA/DTA), inductively coupled plasma optical emission spectroscopy (ICP-OES) and temperature-programmed reduction with hydrogen (H2-TPR). Their catalytic performances were evaluated in the catalytic oxidation of toluene. Three consecutive catalytic cycles were performed for each catalyst in order to reach steady state performances. In order to assess the stability of the catalysts under reaction conditions, the catalytic performances were studied upon long term experiments running for 24 h at 25% of toluene conversion. For comparison purposes, the catalytic activity of the present manganese oxide catalysts was compared with that of typical industrial catalysts such as a commercial Pd/Al2O3 catalyst containing 0.78% Pd. The crystalline features detected in the XRD patterns, are well-consistent with the formation of the desired structures. Based on their specific surface area and their low-temperature reducibility, the catalysts were ranked as follows: OMSs > Mn2O3 > OMSh > LaMnO3. This trend was in good agreement with the performances observed in the catalytic removal of toluene. A kinetic model was proposed and a good agreement was obtained upon fitting with the experimental data.Se prepararon cuatro catalizadores diferentes a base de óxido de manganeso : una perovskita (LaMnO 3 ), por el método sol-gel; Mn 2 O 3 , método rápido y Tamiz Molecular Octaédrico (OMS-2) por dos métodos de preparación diferentes, vía estado sólido (OMS s ) e hidrotermal (OMS h ). Las propiedades fisicoquímicas de estos catalizadores se caracterizaron por difracción de rayos X (XRD), adsorción-desorción de N 2 a −196 °C, análisis termogravimétrico y térmico diferencial (TGA/DTA), espectroscopia de emisión óptica de plasma acoplado inductivamente (ICP-OES) y reducción a temperatura programada con hidrógeno (H 2-TPR). Sus actuaciones catalíticas se evaluaron en la oxidación catalítica de tolueno. Se realizaron tres ciclos catalíticos consecutivos para cada catalizador con el fin de alcanzar rendimientos de estado estable. Para evaluar la estabilidad de los catalizadores en las condiciones de reacción, se estudiaron los rendimientos catalíticos en experimentos a largo plazo durante 24 h al 25 % de conversión de tolueno. Con fines comparativos, la actividad catalítica de los presentes catalizadores de óxido de manganeso se comparó con la de los catalizadores industriales típicos, como el Pd/Al 2 O 3 comercial.catalizador que contiene 0,78% Pd. Las características cristalinas detectadas en los patrones XRD son consistentes con la formación de las estructuras deseadas. Según su área de superficie específica y su reducibilidad a baja temperatura, los catalizadores se clasificaron de la siguiente manera: OMS s > Mn 2 O 3 > OMS h > LaMnO 3 . Esta tendencia estaba en buen acuerdo con los rendimientos observados en la eliminación catalítica de tolueno. Se propuso un modelo cinético y se obtuvo un buen acuerdo al ajustar con los datos experimentales

    Electron effective mobility in strained Si/Si1-xGex MOS devices using Monte Carlo simulation

    Full text link
    Based on Monte Carlo simulation, we report the study of the inversion layer mobility in n-channel strained Si/ Si1-xGex MOS structures. The influence of the strain in the Si layer and of the doping level is studied. Universal mobility curves mueff as a function of the effective vertical field Eeff are obtained for various state of strain, as well as a fall-off of the mobility in weak inversion regime, which reproduces correctly the experimental trends. We also observe a mobility enhancement up to 120 % for strained Si/ Si0.70Ge0.30, in accordance with best experimental data. The effect of the strained Si channel thickness is also investigated: when decreasing the thickness, a mobility degradation is observed under low effective field only. The role of the different scattering mechanisms involved in the strained Si/ Si1-xGex MOS structures is explained. In addition, comparison with experimental results is discussed in terms of SiO2/ Si interface roughness, as well as surface roughness of the SiGe substrate on which strained Si is grown.Comment: 25 pages, 8 figures, 1 table, revised version, discussions and references adde

    The Rho exchange factor Arhgef1 mediates the effects of angiotensin II on vascular tone and blood pressure

    Get PDF
    Hypertension is one of the most frequent pathologies in the industrialized world. Although recognized to be dependent on a combination of genetic and environmental factors, its molecular basis remains elusive. Increased activity of the monomeric G protein RhoA in arteries is a common feature of hypertension. However, how RhoA is activated and whether it has a causative role in hypertension remains unclear. Here we provide evidence that Arhgef1 is the RhoA guanine exchange factor specifically responsible for angiotensin II-induced activation of RhoA signaling in arterial smooth muscle cells. We found that angiotensin II activates Arhgef1 through a previously undescribed mechanism in which Jak2 phosphorylates Tyr738 of Arhgef1. Arhgef1 inactivation in smooth muscle induced resistance to angiotensin II-dependent hypertension in mice, but did not affect normal blood pressure regulation. Our results show that control of RhoA signaling through Arhgef1 is central to the development of angiotensin II-dependent hypertension and identify Arhgef1 as a potential target for the treatment of hypertension
    corecore