634 research outputs found

    Performance of a novel wafer scale CMOS active pixel sensor for bio-medical imaging

    Get PDF
    Recently CMOS Active Pixels Sensors (APSs) have become a valuable alternative to amorphous Silicon and Selenium Flat Panel Imagers (FPIs) in bio-medical imaging applications. CMOS APSs can now be scaled up to the standard 20 cm diameter wafer size by means of a reticle stitching block process. However despite wafer scale CMOS APS being monolithic, sources of non-uniformity of response and regional variations can persist representing a significant challenge for wafer scale sensor response. Non-uniformity of stitched sensors can arise from a number of factors related to the manufacturing process, including variation of amplification, variation between readout components, wafer defects and process variations across the wafer due to manufacturing processes. This paper reports on an investigation into the spatial non-uniformity and regional variations of a wafer scale stitched CMOS APS. For the first time a per-pixel analysis of the electro-optical performance of a wafer CMOS APS is presented, to address inhomogeneity issues arising from the stitching techniques used to manufacture wafer scale sensors. A complete model of the signal generation in the pixel array has been provided and proved capable of accounting for noise and gain variations across the pixel array. This novel analysis leads to readout noise and conversion gain being evaluated at pixel level, stitching block level and in regions of interest, resulting in a coefficient of variation ā‰¤ 1.9%. The uniformity of the image quality performance has been further investigated in a typical X-ray application, i.e. mammography, showing a uniformity in terms of CNR among the highest when compared with mammography detectors commonly used in clinical practise. Finally, in order to compare the detection capability of this novel APS with the currently used technology (i.e. FPIs), theoretical evaluation of the Detection Quantum Efficiency (DQE) at zero-frequency has been performed, resulting in a higher DQE for this detector compared to FPIs. Optical characterization, X-ray contrast measurements and theoretical DQE evaluation suggest that a trade off can be found between the need of a large imaging area and the requirement of a uniform imaging performance, making the DynAMITe large area CMOS APS suitable for a range of bio-medical applications

    Partitioning heritability by functional annotation using genome-wide association summary statistics

    Get PDF
    Recent work has demonstrated that some functional categories of the genome contribute disproportionately to the heritability of complex diseases. Here we analyze a broad set of functional elements, including cell type-specific elements, to estimate their polygenic contributions to heritability in genome-wide association studies (GWAS) of 17 complex diseases and traits with an average sample size of 73,599. To enable this analysis, we introduce a new method, stratified LD score regression, for partitioning heritability from GWAS summary statistics while accounting for linked markers. This new method is computationally tractable at very large sample sizes and leverages genome-wide information. Our findings include a large enrichment of heritability in conserved regions across many traits, a very large immunological disease-specific enrichment of heritability in FANTOM5 enhancers and many cell type-specific enrichments, including significant enrichment of central nervous system cell types in the heritability of body mass index, age at menarche, educational attainment and smoking behavior

    Acute Cholecystitis Is a Common Complication after Allogeneic Stem Cell Transplantation and Is Associated with the Use of Total Parenteral Nutrition

    Get PDF
    AbstractThe incidence and risk factors for acute cholecystitis after allogeneic hematopoietic stem cell transplantation (HSCT) are not well defined. Of 644 consecutive adult transplants performed at our institution between 2001 and 2011, acute cholecystitis occurred in the first year of transplant in 32 patients (5.0%). We conducted 2 retrospective case-control studies of this population to determine risk factors for cholecystitis after HSCT and to evaluate the performance of different methods of imaging to diagnosis cholecystitis in patients undergoing HSCT compared with non-HSCT patients. In the HSCT population, development of cholecystitis was associated with an increased 1-year overall mortality rate (62.5% versus 19.8%, P < .001). The risk of developing cholecystitis was higher in patients who received total parenteral nutrition (TPN) (adjusted odds ratio, 3.41; PĀ = .009). There was a trend toward more equivocal abdominal ultrasound findings in HSCT recipients with acute cholecystitis compared with nontransplant patients (50.0% versus 30.6%, PĀ = .06). However, hepatobiliary iminodiacetic acid (HIDA) scans were definitively positive for acute cholecystitis in most patients in both populations (80.0% of HSCT recipients versus 77.4% of control subjects, PĀ = .82). In conclusion, acute cholecystitis is a common early complication of HSCT, the risk is increased in patients who receive TPN, and it is associated with high 1-year mortality. In HSCT recipients with findings suggestive of acute cholecystitis, especially those receiving TPN, early use of HIDA scan may be considered over ultrasound

    Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group.

    Get PDF
    Cancer immunotherapy has transformed the treatment of cancer. However, increasing use of immune-based therapies, including the widely used class of agents known as immune checkpoint inhibitors, has exposed a discrete group of immune-related adverse events (irAEs). Many of these are driven by the same immunologic mechanisms responsible for the drugs\u27 therapeutic effects, namely blockade of inhibitory mechanisms that suppress the immune system and protect body tissues from an unconstrained acute or chronic immune response. Skin, gut, endocrine, lung and musculoskeletal irAEs are relatively common, whereas cardiovascular, hematologic, renal, neurologic and ophthalmologic irAEs occur much less frequently. The majority of irAEs are mild to moderate in severity; however, serious and occasionally life-threatening irAEs are reported in the literature, and treatment-related deaths occur in up to 2% of patients, varying by ICI. Immunotherapy-related irAEs typically have a delayed onset and prolonged duration compared to adverse events from chemotherapy, and effective management depends on early recognition and prompt intervention with immune suppression and/or immunomodulatory strategies. There is an urgent need for multidisciplinary guidance reflecting broad-based perspectives on how to recognize, report and manage organ-specific toxicities until evidence-based data are available to inform clinical decision-making. The Society for Immunotherapy of Cancer (SITC) established a multidisciplinary Toxicity Management Working Group, which met for a full-day workshop to develop recommendations to standardize management of irAEs. Here we present their consensus recommendations on managing toxicities associated with immune checkpoint inhibitor therapy

    A review of satellite-based global agricultural monitoring systems available for Africa

    Get PDF
    Abstract The increasing frequency and severity of extreme climatic events and their impacts are being realized in many regions of the world, particularly in smallholder crop and livestock production systems in Sub-Saharan Africa (SSA). These events underscore the need for timely early warning. Satellite Earth Observation (EO) availability, rapid developments in methodology to archive and process them through cloud services and advanced computational capabilities, continue to generate new opportunities for providing accurate, reliable, and timely information for decision-makers across multiple cropping systems and for resource-constrained institutions. Today, systems and tools that leverage these developments to provide open access actionable early warning information exist. Some have already been employed by early adopters and are currently operational in selecting national monitoring programs in Angola, Kenya, Rwanda, Tanzania, and Uganda. Despite these capabilities, many governments in SSA still rely on traditional crop monitoring systems, which mainly rely on sparse and long latency in situ reports with little to no integration of EO-derived crop conditions and yield models. This study reviews open-access operational agricultural monitoring systems available for Africa. These systems provide the best-available open-access EO data that countries can readily take advantage of, adapt, adopt, and leverage to augment national systems and make significant leaps (timeliness, spatial coverage and accuracy) of their monitoring programs. Data accessible (vegetation indices, crop masks) in these systems are described showing typical outputs. Examples are provided including crop conditions maps, and damage assessments and how these have integrated into reporting and decision-making. The discussion compares and contrasts the types of data, assessments and products can expect from using these systems. This paper is intended for individuals and organizations seeking to access and use EO to assess crop conditions who might not have the technical skill or computing facilities to process raw data into informational products

    Functionally informed fine-mapping and polygenic localization of complex trait heritability

    Get PDF
    Fine-mapping aims to identify causal variants impacting complex traits. We propose PolyFun, a computationally scalable framework to improve fine-mapping accuracy by leveraging functional annotations across the entire genome-not just genome-wide-significant loci-to specify prior probabilities for fine-mapping methods such as SuSiE or FINEMAP. In simulations, PolyFun + SuSiE and PolyFun + FINEMAP were well calibrated and identified >20% more variants with a posterior causal probability >0.95 than identified in their nonfunctionally informed counterparts. In analyses of 49 UK Biobank traits (average n = 318,000), PolyFun + SuSiE identified 3,025 fine-mapped variant-trait pairs with posterior causal probability >0.95, a >32% improvement versus SuSiE. We used posterior mean per-SNP heritabilities from PolyFun + SuSiE to perform polygenic localization, constructing minimal sets of common SNPs causally explaining 50% of common SNP heritability; these sets ranged in size from 28 (hair color) to 3,400 (height) to 2 million (number of children). In conclusion, PolyFun prioritizes variants for functional follow-up and provides insights into complex trait architectures. PolyFun is a computationally scalable framework for functionally informed fine-mapping that makes full use of genome-wide data. It prioritizes more variants than previous methods when applied to 49 complex traits from UK Biobank.Peer reviewe
    • ā€¦
    corecore