47 research outputs found
Recommended from our members
Resource constrained routing and scheduling: Review and research prospects
In the service industry, it is crucial to efficiently allocate scarce resources to perform tasks and meet particular service requirements. What considerably complicates matters is when these resources, for example skilled technicians, nurses, and home carers have to visit different customer locations. This paper provides a comprehensive survey on resource constrained routing and scheduling that unveils the problem characteristics with respect to resource qualifications, service requirements and problem objectives. It also identifies the most effective exact and heuristic algorithms for this class of problems. The paper closes with several research prospects
Production Scheduling with Complex Precedence Constraints in Parallel Machines
Heuristic search is a core area of artificial intelligence and the employment of an efficient search algorithm is critical to the performance of an intelligent system. This paper addresses a production scheduling problem with complex precedence constraints in an identical parallel machines environment. Although this particular problem can be found in several production and other scheduling applications; it is considered to be NP-hard due to its high computational complexity. The solution approach we adopt is based on a comparison among several dispatching rules combined with a diagram analysis methodology. Computational results on large instances provide relatively high quality practical solutions in very short computational times, indicating the applicability of the methodology in real life production scheduling applications
Recommended from our members
Flexible job shop scheduling problems with arbitrary precedence graphs
A common assumption in the shop scheduling literature is that the processing order of the operations of each job is sequential; however, in practice there can be multiple connections and finish-to-start dependencies among the operations of each job. This paper studies exible job shop scheduling problems with arbitrary precedence graphs. Rigorous mixed integer and constraint programming models are presented, as well as an evolutionary algorithm is proposed to solve large scale problems. The proposed heuristic solution framework is equipped with effcient evolution and local search mechanisms as well as new feasibility detection and makespan estimation methods. To that end, new theorems are derived that extend previous theoretical contributions of the literature. Computational experiments on existing benchmark data sets show that the proposed solution methods outperform the current state-of-the-art. Overall, 59 new best solutions and 61 new lower bounds are produced for a total of 228 benchmark problem instances of the literature. To explore the impact of the arbitrary precedence graphs, lower bounds and heuristic solutions are generated for new large-scale problems. These experiments illustrate that the machine assignment flexibility and density of the precedence graphs, affect not only the makespan, but also the difficulty of producing good upper bounds
Recommended from our members
Optimizing emergency preparedness and resource utilization in mass-casualty incidents
This paper presents a response model for the aftermath of a Mass-Casualty Incident (MCI) that can be used to provide operational guidance for regional emergency planning as well as to evaluate strategic preparedness plans. A mixed integer programming (MIP) formulation is proposed for the combined ambulance dispatching, patient-to-hospital assignment, and treatment ordering problem. T he goal is to allocate effectively the limited resources during the response so as to improve patient outcomes, while the objectives are to minimize the overall response time and the total flow time required to treat all patients, in a hierarchical fashion. The model is solved via exact and MIP-based heuristic solution methods. The applicability of the model and the performance of the new methods are challenged on realistic MCI scenarios. We consider the hypothetical case of a terror attack at the New York Stock Exchange in Lower Manhattan with up to 150 trauma patients. We quantify the impact of capacity-based bottlenecks for both ambulances and available hospital beds. We also explore the trade-off between accessing remote hospitals for demand smoothing versus reduced ambulance transportation times
A Unified Solution Framework for Flexible Job Shop Scheduling Problems with Multiple Resource Constraints
This paper examines flexible job shop scheduling problems with multiple resource constraints. A unified solution framework is presented for modelling various types of non-renewable, renewable and cumulative resources, such as limited capacity machine buffers, tools, utilities and work in progress buffers. We propose a Constraint Programming (CP) model and a CP-based Adaptive Large Neighbourhood Search (ALNS-CP) algorithm. The ALNS-CP uses long-term memory structures to store information about the assignment to machines of both individual operations and pairs of operations, as encountered in high-quality and diverse solutions during the search process. This information is used to create additional constraints for the CP solver, which guide the search towards promising regions of the solution space. Numerous experiments are conducted on well-known benchmark sets to assess the performance of ALNS-CP against the current state-of-the-art. Additional experiments are conducted on new instances of various sizes to study the impact of different resource types on the makespan. The computational results show that the proposed solution framework is highly competitive, while it was able to produce 39 new best solutions on well-known problem instances of the literature
A well-scalable metaheuristic for the fleet size and mix vehicle routing problem with time windows
This paper presents an efficient and well-scalable metaheuristic for fleet size and mix vehicle routing with time windows. The suggested solution method combines the strengths of well-known threshold accepting and guided local search metaheuristics to guide a set of four local search heuristics. The computational tests were done using the benchmarks of [Liu, F.-H., & Shen, S.-Y. (1999). The fleet size and mix vehicle routing problem with time windows. Journal of the Operational Research Society, 50(7), 721-732] and 600 new benchmark problems suggested in this paper. The results indicate that the suggested method is competitive and scales almost linearly up to instances with 1000 customers
On the Multi-Resource Flexible Job-Shop Scheduling Problem with Arbitrary Precedence Graphs
This paper aims at linking the work presented in Dauz`ere-P´er`es et al. (1998) and more recently in Kasapidis et al. (2021) on the multi-resource flexible job-shop scheduling problem with non-linear routes or equivalently with arbitrary precedence graphs. In particular, we present a Mixed Integer Linear Programming model and a Constraint Programming model, to formulate the problem. We also compare the theorems introduced in Dauz`ere-P´er`es et al. (1998) and Kasapidis et al. (2021), and propose a new theorem extension. Computational experiments were conducted to assess the efficiency and effectiveness of all propositions. Lastly, the proposed MIP and CP models are tested on benchmark problems of the literature and comparisons are made with state-of-the-art algorithms