164 research outputs found
Modelling the Service Quality of Public Bicycle Schemes Considering User Heterogeneity
This article proposes a methodology for studying the quality of service perceived by users of a public bicycle scheme. The public are involved from the first phases of the research through their presence in focus groups to identify the relevant variables asked about in the survey. Ordered probit models have been calibrated which consider systematic variations in preference and random parameters. The results highlight the importance of safety and available information above other service variables, as well as the adjustment in perception of overall quality after considering each of the characteristics of the service, as it is proposed in this methodology
Mission analysis tool for turboelectric powered unmanned aircraft systems
This paper proposes an analytical model that calculates various flight parameters, such as peak maximum range for pre-determined configurations based on pre-built systems by the research group. The model serves as a tool to compare different turboelectric systems with respect to flight operability and assist in determining an optimal configuration for a select mission flight. This tool performs calculations with user inputs of leg type and altitudes, and battery specifications of capacity, voltage, and discharge rate. Calculations follow basic aerodynamic principles and relations to acquire other flight characteristics such as velocity, fuel burn, and rate of climb
Seasonal changes in patterns of gene expression in avian song control brain regions.
This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Photoperiod and hormonal cues drive dramatic seasonal changes in structure and function of the avian song control system. Little is known, however, about the patterns of gene expression associated with seasonal changes. Here we address this issue by altering the hormonal and photoperiodic conditions in seasonally-breeding Gambel's white-crowned sparrows and extracting RNA from the telencephalic song control nuclei HVC and RA across multiple time points that capture different stages of growth and regression. We chose HVC and RA because while both nuclei change in volume across seasons, the cellular mechanisms underlying these changes differ. We thus hypothesized that different genes would be expressed between HVC and RA. We tested this by using the extracted RNA to perform a cDNA microarray hybridization developed by the SoNG initiative. We then validated these results using qRT-PCR. We found that 363 genes varied by more than 1.5 fold (>log(2) 0.585) in expression in HVC and/or RA. Supporting our hypothesis, only 59 of these 363 genes were found to vary in both nuclei, while 132 gene expression changes were HVC specific and 172 were RA specific. We then assigned many of these genes to functional categories relevant to the different mechanisms underlying seasonal change in HVC and RA, including neurogenesis, apoptosis, cell growth, dendrite arborization and axonal growth, angiogenesis, endocrinology, growth factors, and electrophysiology. This revealed categorical differences in the kinds of genes regulated in HVC and RA. These results show that different molecular programs underlie seasonal changes in HVC and RA, and that gene expression is time specific across different reproductive conditions. Our results provide insights into the complex molecular pathways that underlie adult neural plasticity
The Songbird Neurogenomics (SoNG) Initiative: Community-based tools and strategies for study of brain gene function and evolution
BACKGROUND: Songbirds hold great promise for biomedical, environmental and evolutionary research. A complete draft sequence of the zebra finch genome is imminent, yet a need remains for application of genomic resources within a research community traditionally focused on ethology and neurobiological methods. In response, we developed a core set of genomic tools and a novel collaborative strategy to probe gene expression in diverse songbird species and natural contexts. RESULTS: We end-sequenced cDNAs from zebra finch brain and incorporated additional sequences from community sources into a database of 86,784 high quality reads. These assembled into 31,658 non-redundant contigs and singletons, which we annotated via BLAST search of chicken and human databases. The results are publicly available in the ESTIMA:Songbird database. We produced a spotted cDNA microarray with 20,160 addresses representing 17,214 non-redundant products of an estimated 11,500â15,000 genes, validating it by analysis of immediate-early gene (zenk) gene activation following song exposure and by demonstrating effective cross hybridization to genomic DNAs of other songbird species in the Passerida Parvorder. Our assembly was also used in the design of the "Lund-zfa" Affymetrix array representing ~22,000 non-redundant sequences. When the two arrays were hybridized to cDNAs from the same set of male and female zebra finch brain samples, both arrays detected a common set of regulated transcripts with a Pearson correlation coefficient of 0.895. To stimulate use of these resources by the songbird research community and to maintain consistent technical standards, we devised a "Community Collaboration" mechanism whereby individual birdsong researchers develop experiments and provide tissues, but a single individual in the community is responsible for all RNA extractions, labelling and microarray hybridizations. CONCLUSION: Immediately, these results set the foundation for a coordinated set of 25 planned experiments by 16 research groups probing fundamental links between genome, brain, evolution and behavior in songbirds. Energetic application of genomic resources to research using songbirds should help illuminate how complex neural and behavioral traits emerge and evolve
Polarization of the Effects of Autoimmune and Neurodegenerative Risk Alleles in Leukocytes
To extend our understanding of the genetic basis of human immune function and dysfunction, we performed an expression quantitative trait locus (eQTL) study of purified CD4[superscript +] T cells and monocytes, representing adaptive and innate immunity, in a multi-ethnic cohort of 461 healthy individuals. Context-specific cis- and trans-eQTLs were identified, and cross-population mapping allowed, in some cases, putative functional assignment of candidate causal regulatory variants for disease-associated loci. We note an over-representation of T cellâspecific eQTLs among susceptibility alleles for autoimmune diseases and of monocyte-specific eQTLs among Alzheimerâs and Parkinsonâs disease variants. This polarization implicates specific immune cell types in these diseases and points to the need to identify the cell-autonomous effects of disease susceptibility variants
Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility
We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses
Recommended from our members
Trans-pQTL study identifies immune crosstalk between Parkinson and Alzheimer loci
Objective: Given evidence from genetic studies, we hypothesized that there may be a shared component to the role of myeloid function in Parkinson and Alzheimer disease (PD and AD) and assessed whether PD susceptibility variants influenced protein expression of well-established AD-associated myeloid genes in human monocytes. Methods: We repurposed data in which AD-related myeloid proteins CD33, TREM1, TREM2, TREML2, TYROBP, and PTK2B were measured by flow cytometry in monocytes from 176 participants of the PhenoGenetic Project (PGP) and Harvard Aging Brain Study. Linear regression was used to identify associations between 24 PD risk variants and protein expression. The 2 cohorts were meta-analyzed in a discovery analysis, and the 4 most strongly suggestive results were validated in an independent cohort of 50 PGP participants. Results: We discovered and validated an association between the PD risk allele rs12456492G in the RIT2 locus and increased CD33 expression (pjoint = 3.50 Ă 10â5) and found strongly suggestive evidence that rs11060180A in the CCDC62/HIP1R locus decreased PTK2B expression (pjoint = 1.12 Ă 10â4). Furthermore, in older individuals, increased CD33 expression on peripheral monocytes was associated with a greater burden of parkinsonism (p = 0.047), particularly bradykinesia (p = 6.64 Ă 10â3). Conclusions: We find that the rs12456492 PD risk variant affects expression of AD-associated protein CD33 in peripheral monocytes, which suggests that genetic factors for these 2 diseases may converge to influence overlapping innate immune-mediated mechanisms that contribute to neurodegeneration. Furthermore, the effect of the rs12456492G PD risk allele on increased CD33 suggests that the inhibition of certain myeloid functions may contribute to PD susceptibility, as is the case for AD
Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus.
Systemic lupus erythematosus (SLE) is a genetically complex autoimmune disease characterized by loss of immune tolerance to nuclear and cell surface antigens. Previous genome-wide association studies (GWAS) had modest sample sizes, reducing their scope and reliability. Our study comprised 7,219 cases and 15,991 controls of European ancestry, constituting a new GWAS, a meta-analysis with a published GWAS and a replication study. We have mapped 43 susceptibility loci, including ten new associations. Assisted by dense genome coverage, imputation provided evidence for missense variants underpinning associations in eight genes. Other likely causal genes were established by examining associated alleles for cis-acting eQTL effects in a range of ex vivo immune cells. We found an over-representation (n = 16) of transcription factors among SLE susceptibility genes. This finding supports the view that aberrantly regulated gene expression networks in multiple cell types in both the innate and adaptive immune response contribute to the risk of developing SLE
- âŠ