844 research outputs found

    2D kinematics of the edge-on spiral galaxy ESO 379-G006

    Full text link
    We present a kinematical study of the nearly edge-on galaxy ESO 379-G006 that shows the existence of extraplanar ionized gas. With Fabry-Perot spectroscopy at H-alpha, we study the kinematics of ESO 379-G006 using velocity maps and position-velocity diagrams parallel to the major and to the minor axis of the galaxy. We build the rotation curve of the disk and discuss the role of projection effects due to the fact of viewing this galaxy nearly edge-on. The twisting of the isovelocities in the radial velocity field of the disk of ESO 379-G006 as well as the kinematic asymmetries found in some position-velocity diagrams parallel to the minor axis of the galaxy suggest the existence of deviations to circular motions in the disk that can be modeled and explained with the inclusion of a radial inflow probably generated by a bar or by spiral arms. We succeeded in detecting extraplanar Diffuse Ionized Gas in this galaxy. At the same time, from the analysis of position-velocity diagrams, we found some evidence that the extraplanar gas could lag in rotation velocity with respect to the midplane rotation.Comment: 61 pages, 15 figures. Accepted for publication in A

    Uncertainty quantification in energy management procedures

    Get PDF
    Complex energy systems are made up of a number of components interacting together via different energy vectors. The assessment of their performance under dynamic working conditions, where user demand and energy prices vary over time, requires a simulation tool. Regardless of the accuracy of this procedure, the uncertainty in data, obtained both by measurements or by forecasting, is usually non-negligible and requires the study of the sensitivity of results versus input data. In this work, polynomial chaos expansion technique is used to evaluate the variation of cogeneration plant performance with respect to the uncertainty of energy prices and user requests. The procedure allows to obtain this information with a much lower computational cost than that of usual Monte-Carlo approaches. Furthermore, all the tools used in this paper, which were developed in Python, are published as free and open source software

    Energy in one dimensional linear waves in a string

    Full text link
    We consider the energy density and energy transfer in small amplitude, one-dimensional waves on a string, and find that the common expressions used in textbooks for the introductory physics with calculus course give wrong results for some cases, including standing waves. We discuss the origin of the problem, and how it can be corrected in a way appropriate for the introductory calculus based physics course.Comment: 5 page

    Resilience framework for seaport infrastructure: theory and application

    Get PDF
    The efficient movement of goods is crucial to the economic growth of communities. This makes the existence of seaports essential for the marine transportation system. Due to their natural location, ports are continuously threatened by natural hazards such as wind action, which necessitates a continuous monitoring and assessment for their performance. The work presented here aims at assessing the resilience of ports against natural disasters. This is done by identifying the performance and the recovery rate of such infrastructure during the period following the event. The research commenced with gathering information about the port’s main components that are influenced by natural hazards. The collected data has been compiled in the form of indicators, which have been filtered and grouped under four dimensions in the proposed “PORT framework”. Each of the indicator has been allocated a measure to enable its quantitative evaluation. The aggregation of the indicators’ values allows identifying the port resilience

    Critical boron-doping levels for generation of dislocations in synthetic diamond

    Get PDF
    Defects induced by boron doping in diamond layers were studied by transmission electron microscopy. The existence of a critical boron doping level above which defects are generated is reported. This level is found to be dependent on the CH4 /H2 molar ratios and on growth directions. The critical boron concentration lied in the 6.5–17.0 X 10 20 at/cm3 range in the direction and at 3.2 X 1021 at/cm 3 for the one. Strain related effects induced by the doping are shown not to be responsible. From the location of dislocations and their Burger vectors, a model is proposed, together with their generation mechanism.6 page
    • …
    corecore