23 research outputs found
Scotin, a novel p53-inducible proapoptotic protein located in the ER and the nuclear membrane
p53 is a transcription factor that induces growth arrest or apoptosis in response to cellular stress. To identify new p53-inducible proapoptotic genes, we compared, by differential display, the expression of genes in spleen or thymus of normal and p53 nullizygote mice after Ī³-irradiation of whole animals. We report the identification and characterization of human and mouse Scotin homologues, a novel gene directly transactivated by p53. The Scotin protein is localized to the ER and the nuclear membrane. Scotin can induce apoptosis in a caspase-dependent manner. Inhibition of endogenous Scotin expression increases resistance to p53-dependent apoptosis induced by DNA damage, suggesting that Scotin plays a role in p53-dependent apoptosis. The discovery of Scotin brings to light a role of the ER in p53-dependent apoptosis
Toxic Diatom Aldehydes Affect Defence Gene Networks in Sea Urchins.
Marine organisms possess a series of cellular strategies to counteract the negative effects of toxic compounds, including the massive reorganization of gene expression networks. Here we report the modulated dose-dependent response of activated genes by diatom polyunsaturated aldehydes (PUAs) in the sea urchin Paracentrotus lividus. PUAs are secondary metabolites deriving from the oxidation of fatty acids, inducing deleterious effects on the reproduction and development of planktonic and benthic organisms that feed on these unicellular algae and with anti-cancer activity. Our previous results showed that PUAs target several genes, implicated in different functional processes in this sea urchin. Using interactomic Ingenuity Pathway Analysis we now show that the genes targeted by PUAs are correlated with four HUB genes, NF-ĪŗB, p53, Ī“-2-catenin and HIF1A, which have not been previously reported for P. lividus. We propose a working model describing hypothetical pathways potentially involved in toxic aldehyde stress response in sea urchins. This represents the first report on gene networks affected by PUAs, opening new perspectives in understanding the cellular mechanisms underlying the response of benthic organisms to diatom exposure
Induction of PPM1D following DNA-damaging treatments through a conserved p53 response element coincides with a shift in the use of transcription initiation sites
PPM1D (Wip1), a type PP2C phosphatase, is expressed at low levels in most normal tissues but is overexpressed in several types of cancers. In cells containing wild-type p53, the levels of PPM1D mRNA and protein increase following exposure to genotoxic stress, but the mechanism of regulation by p53 was unknown. PPM1D also has been identified as a CREB-regulated gene due to the presence of a cyclic AMP response element (CRE) in the promoter. Transient transfection and chromatin immunoprecipitation experiments in HCT116 cells were used to characterize a conserved p53 response element located in the 5ā² untranslated region (UTR) of the PPM1D gene that is required for the p53-dependent induction of transcription from the human PPM1D promoter. CREB binding to the CRE contributes to the regulation of basal expression of PPM1D and directs transcription initiation at upstream sites. Following exposure to ultraviolet (UV) or ionizing radiation, the abundance of transcripts with short 5ā² UTRs increased in cells containing wild-type p53, indicating increased utilization of downstream transcription initiation sites. In cells containing wild-type p53, exposure to UV resulted in increased PPM1D protein levels even when PPM1D mRNA levels remained constant, indicating post-transcriptional regulation of PPM1D protein levels