204 research outputs found
Concurrent multiple sclerosis and amyotrophic lateral sclerosis: where inflammation and neurodegeneration meet?
The concurrence of multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS) is exceedingly rare and the pathological features have not been examined extensively. Here we describe the key pathological features of a 40 year old man with pathologically confirmed concurrent MS and ALS
Cancer and stroke : commonly encountered by clinicians, but little evidence to guide clinical approach
The association between stroke and cancer is well-established. Because of an aging population and longer survival rates, the frequency of synchronous stroke and cancer will become even more common. Different pathophysiologic mechanisms have been proposed how cancer or cancer treatment directly or via coagulation disturbances can mediate stroke. Increased serum levels of D-dimer, fibrin degradation products, and CRP are more often seen in stroke with concomitant cancer, and the clot retrieved during thrombectomy has a more fibrin- and platelet-rich constitution compared with that of atherosclerotic etiology. Multiple infarctions are more common in patients with active cancer compared with those without a cancer diagnosis. New MRI techniques may help in detecting typical patterns seen in the presence of a concomitant cancer. In ischemic stroke patients, a newly published cancer probability score can help clinicians in their decision-making when to suspect an underlying malignancy in a stroke patient and to start cancer-screening studies. Treating stroke patients with synchronous cancer can be a delicate matter. Limited evidence suggests that administration of intravenous thrombolysis appears safe in non-axial intracranial and non-metastatic cancer patients. Endovascular thrombectomy is probably rather safe in these patients, but probably futile in most patients placed on palliative care due to their advanced disease. In this topical review, we discuss the epidemiology, pathophysiology, and prognosis of ischemic and hemorrhagic strokes as well as cerebral venous thrombosis and concomitant cancer. We further summarize the current evidence on acute management and secondary preventive therapy.Peer reviewe
Serotonergic modulation of the ventral pallidum by 5HT1A, 5HT5A, 5HT7 AND 5HT2C receptors
Introduction: Serotonin's involvement in reward processing is controversial. The large number of serotonin receptor
sub-types and their individual and unique contributions have been difficult to dissect out, yet understanding how
specific serotonin receptor sub-types contribute to its effects on areas associated with reward processing is an
essential step.
Methods: The current study used multi-electrode arrays and acute slice preparations to examine the effects of
serotonin on ventral pallidum (VP) neurons.
Approach for statistical analysis: extracellular recordings were spike sorted using template matching and principal
components analysis, Consecutive inter-spike intervals were then compared over periods of 1200 seconds for each
treatment condition using a student’s t test.
Results and conclusions: Our data suggests that excitatory responses to serotonin application are pre-synaptic in
origin as blocking synaptic transmission with low-calcium aCSF abolished these responses. Our data also suggests
that 5HT1a, 5HT5a and 5HT7 receptors contribute to this effect, potentially forming an oligomeric complex, as 5HT1a
antagonists completely abolished excitatory responses to serotonin application, while 5HT5a and 5HT7 only reduced
the magnitude of excitatory responses to serotonin. 5HT2c receptors were the only serotonin receptor sub-type
tested that elicited inhibitory responses to serotonin application in the VP. These findings, combined with our
previous data outlining the mechanisms underpinning dopamine's effects in the VP, provide key information, which
will allow future research to fully examine the interplay between serotonin and dopamine in the VP. Investigation of
dopamine and serotonins interaction may provide vital insights into our understanding of the VP's involvement in
reward processing. It may also contribute to our understanding of how drugs of abuse, such as cocaine, may hijack
these mechanisms in the VP resulting in sensitization to drugs of abuse
CD4+ Regulatory and Effector/Memory T Cell Subsets Profile Motor Dysfunction in Parkinson’s Disease
Animal models and clinical studies have linked the innate and adaptive immune system to the pathology of Parkinson’s disease (PD). Despite such progress, the specific immune responses that influence disease progression have eluded investigators. Herein, we assessed relationships between T cell phenotype and function with PD progression. Peripheral blood lymphocytes from two separate cohorts, a discovery cohort and a validation cohort, totaling 113 PD patients and 96 age- and environment-matched caregivers were examined by flow cytometric analysis and T cell proliferation assays. Increased effector/memory T cells (Tem), defined as CD45RO+ and FAS+ CD4+ T cells and decreased CD31+ and α4β7+ CD4+ T cells were associated with progressive Unified Parkinson’s Disease Rating Scale III scores. However, no associations were seen between immune biomarkers and increased age or disease duration. Impaired abilities of regulatory T cells (Treg) from PD patients to suppress effector T cell function was observed. These data support the concept that chronic immune stimulation, notably Tem activation and Treg dysfunction is linked to PD pathobiology and disease severity, but not disease duration. The association of T cell phenotypes with motor symptoms provides fresh avenues for novel biomarkers and therapeutic designs
EndoVAscular treatment and ThRombolysis for Ischemic Stroke Patients (EVA-TRISP) registry: basis and methodology of a pan-European prospective ischaemic stroke revascularisation treatment registry.
PURPOSE
The Thrombolysis in Ischemic Stroke Patients (TRISP) collaboration was a concerted effort initiated in 2010 with the purpose to address relevant research questions about the effectiveness and safety of intravenous thrombolysis (IVT). The collaboration also aims to prospectively collect data on patients undergoing endovascular treatment (EVT) and hence the name of the collaboration was changed from TRISP to EVA-TRISP. The methodology of the former TRISP registry for patients treated with IVT has already been published. This paper focuses on describing the EVT part of the registry.
PARTICIPANTS
All centres committed to collecting predefined variables on consecutive patients prospectively. We aim for accuracy and completeness of the data and to adapt local databases to investigate novel research questions. Herein, we introduce the methodology of a recently constructed academic investigator-initiated open collaboration EVT registry built as an extension of an existing IVT registry in patients with acute ischaemic stroke (AIS).
FINDINGS TO DATE
Currently, the EVA-TRISP network includes 20 stroke centres with considerable expertise in EVT and maintenance of high-quality hospital-based registries. Following several successful randomised controlled trials (RCTs), many important clinical questions remain unanswered in the (EVT) field and some of them will unlikely be investigated in future RCTs. Prospective registries with high-quality data on EVT-treated patients may help answering some of these unanswered issues, especially on safety and efficacy of EVT in specific patient subgroups.
FUTURE PLANS
This collaborative effort aims at addressing clinically important questions on safety and efficacy of EVT in conditions not covered by RCTs. The TRISP registry generated substantial novel data supporting stroke physicians in their daily decision making considering IVT candidate patients. While providing observational data on EVT in daily clinical practice, our future findings may likewise be hypothesis generating for future research as well as for quality improvement (on EVT). The collaboration welcomes participation of further centres willing to fulfill the commitment and the outlined requirements
Glial Innate Immunity Generated by Non-Aggregated Alpha-Synuclein in Mouse: Differences between Wild-type and Parkinson's Disease-Linked Mutants
Background: Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized pathologically by the presence in the brain of intracellular protein inclusions highly enriched in aggregated alpha-synuclein (alpha-Syn). Although it has been established that progression of the disease is accompanied by sustained activation of microglia, the underlying molecules and factors involved in these immune-triggered mechanisms remain largely unexplored. Lately, accumulating evidence has shown the presence of extracellular alpha-Syn both in its aggregated and monomeric forms in cerebrospinal fluid and blood plasma. However, the effect of extracellular alpha-Syn on cellular activation and immune mediators, as well as the impact of familial PD-linked alpha-Syn mutants on this stimulation, are still largely unknown.Methods and Findings: In this work, we have compared the activation profiles of non-aggregated, extracellular wild-type and PD-linked mutant alpha-Syn variants on primary glial and microglial cell cultures. After stimulation of cells with alpha-Syn, we measured the release of Th1- and Th2-type cytokines as well as IP-10/CXCL10, RANTES/CCL5, MCP-1/CCL2 and MIP-1 alpha/CCL3 chemokines. Contrary to what had been observed using cell lines or for the case of aggregated alpha-Syn, we found strong differences in the immune response generated by wild-type alpha-Syn and the familial PD mutants (A30P, E46K and A53T).Conclusions: These findings might contribute to explain the differences in the onset and progression of this highly debilitating disease, which could be of value in the development of rational approaches towards effective control of immune responses that are associated with PD
Increased Mitochondrial Calcium Sensitivity and Abnormal Expression of Innate Immunity Genes Precede Dopaminergic Defects in Pink1-Deficient Mice
BACKGROUND: PTEN-induced kinase 1 (PINK1) is linked to recessive Parkinsonism (EOPD). Pink1 deletion results in impaired dopamine (DA) release and decreased mitochondrial respiration in the striatum of mice. To reveal additional mechanisms of Pink1-related dopaminergic dysfunction, we studied Ca²+ vulnerability of purified brain mitochondria, DA levels and metabolism and whether signaling pathways implicated in Parkinson\u27s disease (PD) display altered activity in the nigrostriatal system of Pink1⁻/⁻ mice.
METHODS AND FINDINGS: Purified brain mitochondria of Pink1⁻/⁻ mice showed impaired Ca²+ storage capacity, resulting in increased Ca²+ induced mitochondrial permeability transition (mPT) that was rescued by cyclosporine A. A subpopulation of neurons in the substantia nigra of Pink1⁻/⁻ mice accumulated phospho-c-Jun, showing that Jun N-terminal kinase (JNK) activity is increased. Pink1⁻/⁻ mice 6 months and older displayed reduced DA levels associated with increased DA turnover. Moreover, Pink1⁻/⁻ mice had increased levels of IL-1β, IL-12 and IL-10 in the striatum after peripheral challenge with lipopolysaccharide (LPS), and Pink1⁻/⁻ embryonic fibroblasts showed decreased basal and inflammatory cytokine-induced nuclear factor kappa-β (NF-κB) activity. Quantitative transcriptional profiling in the striatum revealed that Pink1⁻/⁻ mice differentially express genes that (i) are upregulated in animals with experimentally induced dopaminergic lesions, (ii) regulate innate immune responses and/or apoptosis and (iii) promote axonal regeneration and sprouting.
CONCLUSIONS: Increased mitochondrial Ca²+ sensitivity and JNK activity are early defects in Pink1⁻/⁻ mice that precede reduced DA levels and abnormal DA homeostasis and may contribute to neuronal dysfunction in familial PD. Differential gene expression in the nigrostriatal system of Pink1⁻/⁻ mice supports early dopaminergic dysfunction and shows that Pink1 deletion causes aberrant expression of genes that regulate innate immune responses. While some differentially expressed genes may mitigate neurodegeneration, increased LPS-induced brain cytokine expression and impaired cytokine-induced NF-κB activation may predispose neurons of Pink1⁻/⁻ mice to inflammation and injury-induced cell death
Biomarkers of Multiple Sclerosis
The search for an ideal multiple sclerosis biomarker with good diagnostic value, prognostic reference and an impact on clinical outcome has yet to be realized and is still ongoing. The aim of this review is to establish an overview of the frequent biomarkers for multiple sclerosis that exist to date. The review summarizes the results obtained from electronic databases, as well as thorough manual searches. In this review the sources and methods of biomarkers extraction are described; in addition to the description of each biomarker, determination of the prognostic, diagnostic, disease monitoring and treatment response values besides clinical impact they might possess. We divided the biomarkers into three categories according to the achievement method: laboratory markers, genetic-immunogenetic markers and imaging markers. We have found two biomarkers at the time being considered the gold standard for MS diagnostics. Unfortunately, there does not exist a single solitary marker being able to present reliable diagnostic value, prognostic value, high sensitivity and specificity as well as clinical impact. We need more studies to find the best biomarker for MS.publishersversionPeer reviewe
Balancing the immune response in the brain: IL-10 and its regulation
Background: The inflammatory response is critical to fight insults, such as pathogen invasion or tissue damage, but if not resolved often becomes detrimental to the host. A growing body of evidence places non-resolved inflammation at the core of various pathologies, from cancer to neurodegenerative diseases. It is therefore not surprising that the immune system has evolved several regulatory mechanisms to achieve maximum protection in the absence of pathology.
Main body: The production of the anti-inflammatory cytokine interleukin (IL)-10 is one of the most important mechanisms evolved by many immune cells to counteract damage driven by excessive inflammation. Innate immune cells of the central nervous system, notably microglia, are no exception and produce IL-10 downstream of pattern recognition receptors activation. However, whereas the molecular mechanisms regulating IL-10 expression by innate and acquired immune cells of the periphery have been extensively addressed, our knowledge on the modulation of IL-10 expression by central nervous cells is much scattered. This review addresses the current understanding on the molecular mechanisms regulating IL-10 expression by innate immune cells of the brain and the implications of IL-10 modulation in neurodegenerative disorders.
Conclusion: The regulation of IL-10 production by central nervous cells remains a challenging field. Answering the many remaining outstanding questions will contribute to the design of targeted approaches aiming at controlling deleterious inflammation in the brain.We acknowledge the Portuguese Foundation for Science and Technology (FCT) for providing a PhD grant to DLS (SFRH/BD/88081/2012) and a post-doctoral fellowship to SR (SFRH/BPD/72710/2010). DS, AGC and SR were funded by FEDER through the Competitiveness Factors Operational Programme (COMPETE) and National Funds through FCT under the scope of the project POCI-01-0145-FEDER007038; and by the project NORTE-01-0145-FEDER-000013, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). The MS lab was financed by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020—Operacional Programme for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through FCT in the framework of the project “Institute for Research and Innovation in Health Sciences ” (POCI-01-0145-FEDER-007274). MS is a FCT Associate Investigator. The funding body had no role in the design of the study and collection, analysis, and interpretation of the data and in writing the manuscript
- …