73 research outputs found
Modular and Cooperative Medical Devices and Related Systems and Methods
The various embodiments disclosed herein relate to modular medical devices, including various devices with detachable modular components and various devices with pivotally attached modular components. Additional embodiments relate to procedures in which various of the devices are used cooperatively. Certain embodiments of the medical devices are robotic in vivo devices
METHODS, SYSTEMS, AND DEVICES FOR SURGICAL ACCESS AND PROCEDURES
The embodiments disclosed herein relate to various medical device components, including components that can be incorporated into robotic and/or in vivo medical devices. Certain embodiments include various actuation system embodiments, including fluid actuation systems, drive train actuation systems, and motorless actuation systems. Additional embodiments include a reversibly lockable tube that can provide access for a medical device to a patient\u27s cavity and further provides a reversible rigidity or stability during operation of the device. Further embodiments include various operational components for medical devices, including medical device arm mechanisms that have both axial and rotational movement while maintaining a relatively compact structure. medical device winch components, medical device biopsy/stapler/clamp mechanisms, and medical device adjustable focus mechanisms
In vivo laparoscopic robotics
AbstractRobotic laparoscopic surgery is evolving to include in vivo robotic assistants. The impetus for the development of this technology is to provide surgeons with additional viewpoints and unconstrained manipulators that improve safety and reduce patient trauma. A family of these robots have been developed to provide vision and task assistance. Fixed-base and mobile robots have been designed and tested in animal models with much success. A cholecystectomy, prostatectomy, and nephrectomy have all been performed with the assistance of these robots. These early successful tests show how in vivo laparoscopic robotics may be part of the next advancement in surgical technology
In vivo laparoscopic robotics
Robotic laparoscopic surgery is evolving to include in vivo robotic assistants. The impetus for the development of this technology is to provide surgeons with additional viewpoints and unconstrained manipulators that improve safety and reduce patient trauma. A family of these robots have been developed to provide vision and task assistance. Fixed-base and mobile robots have been designed and tested in animal models with much success. A cholecystectomy, prostatectomy, and nephrectomy have all been performed with the assistance of these robots. These early successful tests show how in vivo laparoscopic robotics may be part of the next advancement in surgical technology
THE STYLE OF LATE CENOZOIC DEFORMATION AT THE EASTERN FRONT OF THE CALIFORNIA COAST RANGES
The 1983 Coalinga earthquake occurred at the eastern boundary of the California Coast Ranges in response to northeast directed thrusting. Such movements over the past 2 Ma have produced Coalinga anticline by folding above the blind eastern tip of the Coalinga thrust zone. The 600-km length of the Coast Ranges boundary shares a common structural setting that involves westward upturn of Cenozoic and Cretaceou strata at the eastern front of the Coast Ranges and a major, southwest facing step in the basement surface beneath the western Great Valley. Like Coalinga anticline, Pliocene and Quaternary folding and faulting along the rest of the boundary also result from northeast-southwest compression acting nearly perpendicular to the strike of the San Andreas fault. We suggest that much of this deformation is related to active thrusts beneath the eastern Coast Ranges. The step in the basement surface beneath the Great Valley seems to have controlled the distribution of this deformation and the shape of the Coast Ranges boundary
Data Assimilation Enhancements to Air Force Weathers Land Information System
The United States Air Force (USAF) has a proud and storied tradition of enabling significant advancements in the area of characterizing and modeling land state information. 557th Weather Wing (557 WW; DoDs Executive Agent for Land Information) provides routine geospatial intelligence information to warfighters, planners, and decision makers at all echelons and services of the U.S. military, government and intelligence community. 557 WW and its predecessors have been home to the DoDs only operational regional and global land data analysis systems since January 1958. As a trusted partner since 2005, Air Force Weather (AFW) has relied on the Hydrological Sciences Laboratory at NASA/GSFC to lead the interagency scientific collaboration known as the Land Information System (LIS). LIS is an advanced software framework for high performance land surface modeling and data assimilation of geospatial intelligence (GEOINT) information
- …