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In vivo laparoscopic robotics
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Abstract Robotic laparoscopic surgery is evolving to include in vivo robotic assis-
tants. The impetus for the development of this technology is to provide surgeons
with additional viewpoints and unconstrained manipulators that improve safety
and reduce patient trauma. A family of these robots have been developed to pro-
vide vision and task assistance. Fixed-base and mobile robots have been designed
and tested in animal models with much success. A cholecystectomy, prostatectomy,
and nephrectomy have all been performed with the assistance of these robots.
These early successful tests show how in vivo laparoscopic robotics may be part
of the next advancement in surgical technology.
ª 2006 Surgical Associates Ltd. Published by Elsevier Ltd. All rights reserved.

Introduction

The use of robotics is currently recognized as
a major driving force for advancing minimally
invasive surgery.1e3 However, current surgical ro-
bots, such as the da Vinci system made by Intuitive
Surgical, have several significant limitations. Al-
though one recent report concluded that robotic
surgery can enhance dexterity compared to tradi-
tional laparoscopy,4 most studies suggest that

current robotic systems offer little or no improve-
ment over standard laparoscopic instruments in
the performance of basic skills.5e7 Current systems
are also not available in most hospitals and remain
constrained by limited sensory and mobility capa-
bilities, and high cost.

Currently available surgical robotic systems are
implemented from outside the body and will
therefore always be constrained to some degree
by the limitations of working through small in-
cisions. Some work has been done to develop
medical robots in which all (or most) of the device
enters the body. The simplest such mechanisms
have been maneuverable endoscopes for colono-
scopy8,9 and laparoscopy.10 These devices have
actuators that can turn the endoscope tip after it
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enters the body. However, support equipment such
as power and control (and sometimes the actua-
tors) remain outside the body.

More advanced in vivo robots have been de-
veloped to explore hollow cavities such as the
colon or esophagus with locomotion systems based
on ‘inch-worm’ motion that use a series of grippers
and extensors,11,12 rolling tracks,13 or rolling
stents.14 These devices all use external power in
the form of electricity and/or vacuum sources for
locomotion.

Another approach is a completely un-tethered
pill that is swallowed and passively passed through
the entire gastrointestinal (GI) tract. One such
commercially available device, called M2A from
Given Imaging Ltd,15,16 returns multiple (thousands)
images as it naturally moves through the GI tract.
However, because the device is entirely passive, it
cannot be directed to image a particular location
and the exact locations of the images are not
known. Combined with the very large volume of im-
ages, the use of this device for diagnosis is difficult.

In order to improve visualization and task
assistance in vivo robots are being tested in the
abdominal cavity during laparoscopic procedures.
The robots have been designed to be either mobile
or have a fixed-base. They can now provide vision
assistance through onboard cameras and task
assistance with simple manipulators. The goal of
this robot development is to place the robot
completely within the abdominal cavity so that
the entry incision does not constrain the motion of
the robot. With such technology, the laparoscope
port can be eliminated from many procedures as
visual feedback will come from the in vivo robots
that will be inserted through one of the tool ports.
Current efforts are also focusing on task assis-
tance. The eventual outcome will be a family of
these robots that can be placed in vivo to assist
surgeons, which will improve patient safety and
surgical flexibility.

Robot designs

Fixed-base robots

To improve visualization for surgeons an in vivo
robotic camera was developed. The first prototype
developed was a pan and tilt robot (Fig. 1) that
allowed the camera to pan 360 degrees and tilt
forward and back 45 degrees. Two independent
permanent magnet direct current motors were
used to provide the actuation. LEDs were used to
provide illumination. The tripod legs are spring
loaded so that they can fold down during insertion

and retraction. This camera robot was used during
porcine surgery to remove a gall-bladder.17 The
additional views provided additional frames of ref-
erence and perspectives that were not available
with the laparoscope alone. These additional cam-
era angles augmented surgical visualization and
improved orientation which proved useful to the
surgeon while removing the pig’s gall-bladder.
This allowed the surgeon to have a better under-
standing of depth, improving safety and allowing
the surgeon to plan and execute the procedure
more effectively.

One drawback of the original pan and tilt robot
design was a set focal length of the camera lens.
The simple lens package allowed for a small foot-
print, but reduced flexibility in focusing at different
distances inside the abdominal cavity. Therefore,
the second generation design included an adjust-
able-focus mechanism that physically moved the
lens to and away from the imager to vary the focal
length. To maintain the same size constraints the
pan motor was used for the focusing mechanism.
Therefore, this tilting robot could tilt 45 degrees
(Fig. 2). This tilting robot has LEDs for illumination.
They are positioned at the end of an arm that folds
down in front of the camera. The ring at the end of
this arm is used for retraction. The bottom edge of
the ring is seen in the camera view so that the sur-
geon can easily clamp onto it and retract the robot.
The tripod legs and this retraction arm are both
spring loaded for insertion and retraction.

Figure 1 The pan and tilt camera robot can pan 360
degrees and tilt�45 degrees. Torsion springs allow the
legs to be abducted after abdominal entry. LEDs provide
illumination.
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Mobile robots

While the fixed-base robots work well to provide
the surgeon with additional visual feedback, mo-
bility is important for tissue manipulation. Such
a mobile platform can also provide visual feedback
while navigating the abdominal cavity. This type of
camera robot works well for exploring the abdom-
inal cavity. These mobile in vivo robots need to
traverse the abdominal organs without causing
tissue damage. Mobility is difficult because the
environment is slick, hilly, and deformable. Much
effort was placed on developing a wheel design
that provided sufficient traction without causing
tissue damage.18 The wheel design was improved
through viscoelastic modeling, laboratory experi-
mentation, and in vivo testing. The final wheel
design incorporates a helical corkscrew treaded
wheel as shown in Fig. 3.

To demonstrate the practical applicability of
this approach to surgery, the successful wheel
design was used to create a wheeled robot with
an adjustable-focus camera (Fig. 3). This mobile
robot has two wheels each connected to an inde-
pendent motor. This allows for forward, reverse
and turning capability. The tail prevents counter-
rotation while the wheels are actuated. The cam-
era lens is located between the wheels as shown
in Fig. 3. A third motor is used to adjust the lens
position and focus depth.

This mobile robotic camera system was tested in
vivo in a porcine model, and used to explore the
abdominal cavity. It also provided the only visual

feedback used by a surgeon during a cholecystec-
tomy.19 By inserting such a mobile camera robot
into the abdominal cavity through one of the stan-
dard laparoscopic tool ports, the traditional third
camera port could be eliminated. This would
reduce patient trauma, and has the potential
to improve laparoscopy compared to current
systems.

A mobile camera and biopsy robot has also been
developed (Fig. 4). This robot includes the adjust-
able-focus camera mechanism, with the ability to
biopsy soft tissue. This robot produces sufficient
clamping force to sample tissue, and sufficient
traction force to retract the tissue sample if it is
not completely severed.

Animal surgery results

The tilting adjustable-focus camera robot was
used recently to successfully remove a canine
prostate and kidney. The robot was placed on the

Figure 2 The tilting adjustable-focus camera robot
can tilt 45 degrees. Torsion springs allow the legs to
be abducted after abdominal entry. LEDs provide
illumination.

Figure 3 The mobile adjustable-focus camera robot
has two independently driven wheels that allow for for-
ward, reverse and turning motion. A small tail prevents
the counter-rotation.

Figure 4 The mobile camera and biopsy robot imple-
ment the successful helical wheel design. This mobile
platform can both be used for visual feedback and tissue
manipulation.
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opposite side of the prostate (Fig. 5), away from
the laparoscope. This provided the surgical team
with two views of the prostate (Fig. 6), one from
both sides. This proved extremely useful while
suturing the urethra after the prostate removal.
During several portions of the surgery the view
from the robotic camera was used exclusively for
visual feedback.

The ability to attain a good laparoscope position
during urological procedures is often difficult.
Using the in vivo camera robots, the view can
easily be changed by remotely controlling the
robot. Such a robot could be used extensively by
urologists operating in the pelvic cavity. These
robots could provide additional alternate views for
the surgeon, or could in fact provide the sole visual
feedback.

Three trocar ports were used for the cholecys-
tectomy performed with the mobile camera
robot. The robot was inserted through one of the
tool ports. After insertion, this port was used
for tool insertion. The second port was also
used for tool insertion, while the third port was
used only for the laparoscope. The laparoscope
provided lighting for the robot’s camera, but the
surgeon did not use visual feedback from the
laparoscope during the procedure (Fig. 7).

A cholecystectomy was performed with this
mobile camera robot providing the only visual
feedback available to the surgeon (Fig. 8) (i.e.
the video from the laparoscope was not viewed
by the surgeon). The ability of the robot to tilt
the adjustable-focus camera 15 degrees without
changing the position of the wheels proved ex-
tremely useful while retracting the liver. The ad-
justable-focus capability of the camera system
allowed the surgeon to have a better understanding

Figure 5 The tilting camera robot observing the
prostatectomy. The video feedback from the tilting
robot was used exclusively during portions of the
surgery.

Figure 6 A view from the tilting robot while suturing
after the prostate removal.

Figure 7 The view from the laparoscope during chole-
cystectomy with the mobile camera robot.

Figure 8 The view from the mobile camera robot dur-
ing the cholecystectomy.
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of depth. The mobile robot also proved very useful
for abdominal exploration and observation of trocar
and tool insertion.

This cholecystectomy demonstrated the effec-
tiveness of a two port procedure with visual
feedback only from the mobile camera robot.
This shows that the designated laparoscope port
may be eliminated and only two ports may be
required for most procedures. The ports could be
initially used for robot insertion and then for tools.
If the laparoscope view was ever needed for
assistance with robot placement it could be in-
serted through one of the tool ports until the robot
was correctly positioned.

Discussion

These tests have demonstrated that it is possible
to perform a common laparoscopic procedure
using an in vivo camera system as the sole source
of visual feedback. This has the potential to
reduce patient trauma by eliminating the need
for a camera port and instead inserting in vivo
camera robots through one of the tool ports. While
the initial prototype was slightly larger than
a traditional trocar, future robots will be smaller
in size, have no tethers, and will incorporate
additional sensors.

Miniature in vivo robots will be far more agile
inside the abdominal cavity than the current
generation of large and expensive external tele-
manipulators. Current laparoscopic robots are
bulky, unwieldy and cannot be easily transported.
Because of their cost, they are typically designed
for multiple surgical procedures with interchange-
able instrument arms. Future miniature robots
may be designed for each specific task. Because
they are small, multiple robots can be employed
simultaneously. Although in the future it might be
possible for such robots to perform the entire
procedure, current technology is more appropriate
for the robots to be used as assistants during
surgery, aiding in visualization and micromani-
pulation. Equipped with additional sensors they
will also be able to explore and provide tissue
diagnosis.

The long-term goal of this work is to create
a team of in vivo robots that could serve as surgical
assistants and/or replace traditional laparoscopic
tools. The successful animal trials show the great
promise for in vivo robotics, and the projected
outcomes have the potential to make important
advancements in minimally invasive surgery.
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