25 research outputs found

    Direct observation of nanocrystal-induced enhancement of tensile ductility in a metallic glass composite

    Get PDF
    Bulk metallic glasses (BMGs) have attracted wide interest, but their successful application is hindered by their low ductility at room temperature. Therefore, the use of composites of a BMG matrix with crystalline secondary phases has been proposed to overcome this drawback. In the present work we demonstrate the fabrication of a tailored BMG nanocomposite containing a high density of monodisperse nanocrystals with a size of around 20 nm using a combination of mechanical and thermal treatment of Cu36Zr48Al8Ag8 well below the crystallization temperature. Direct observations of the interaction of the nanocrystals with a shear band during in situ deformation in a transmission electron microscope demonstrate that the achieved nanocomposite has the potential to inhibit catastrophic fracture in tension. This demonstrates that a sufficient number of nanoscale structural heterogeneities can be a route towards BMG composites with superior mechanical properties

    New Insights into the Metallization of Graphene-Supported Composite Materials-from 3D Cu-Grown Structures to Free-Standing Electrodeposited Porous Ni Foils

    Get PDF
    The conductivity and the state of the surface of supports are of vital importance for metallization via electrodeposition. In this study, we show that the metallization of a carbon fiber-reinforced polymer (CFRP) can be carried out directly if the intermediate graphene oxide (GO) layer is chemically reduced on the CFRP surface. Notably, this approach utilizing only the chemically reduced GO as a conductive support allows us to obtain insights into the interaction of rGO and the electrodeposited metal. Our study reveals that under the same contact current experimental conditions, the electrodeposition of Cu and Ni on rGO follows significantly different deposition modes, resulting in the formation of three-dimensional (3D) and free-standing metallic foils, respectively. Considering that Ni adsorption energy is larger than Ni cohesive energy, it is expected that the adhesion of Ni on rGO@CFRP is enhanced compared to Cu. In contrast, the adhesion of deposited Ni is reduced, suggesting diffusion of H+ between rGO and CFRP, which promotes the hydrogen evolution reaction (HER) and results in the formation of free-standing Ni foils. We ascribe this phenomenon to the unique properties of rGO and the nature of Cu and Ni deposition from electrolytic baths. In the latter, the high adsorption energy of Ni on defective rGO along with HER is the key factor for the formation of the porous layer and free-standing foils. © 2022 The Authors. Published by American Chemical Society

    Electrochemical approaches in synthesis of high surface area materials

    Get PDF
    It is the aim of our work to carry out fundamental studies on designing and synthesizing high surface area functionalized foam and ordered structures for their potential sensing and energy related applications. We combine electrochemical synthesis with structural studies on different length scales including transmission electron microscopy. Templates are directly grown by electrodeposition, either by hydrogen bubble formation or by utilizing of ordered structures formed by anodic electrochemical oxidation. [1-3] We employed an elegant approach to obtain open, foam deposits of Ni and Ni alloys, by using electrodeposition at high current densities, to promote hydrogen evolution and bubble templating (cf. Fig.1). [1] In the next step, the high surface area of such materials was funtionalized by Pd utilizing galvanic displacement reaction. Electrochemical testing of the obtained open foam deposits shows promissing catalytical activity for hydrogen evolution in alkaline environments, as well as methanol and ethanol oxidation. In the case of fabrication of nanodendritic Ag simultaneously grown with porous anodic aluminium oxide we accomplished well anchored dendritic Ag nanostructures [2] of long-term stability [3]. 1. L. D. Rafailović, C. Gammer, C. Rentenberger, T. Trišović, C. Kleber, H. P. Karnthaler, Nano Energy, 2 (2012) 523 https://doi.org/10.1016/j.nanoen.2012.12.004 2. L.D. Rafailovic, C. Gammer, C. Rentenberger, T. Trisovic, C. Kleber, H.P. Karnthaler, Adv. Mater. 27 (2015) 6438 https://doi.org/10.1002/adma.201502451 3. L.D. Rafailovic, C. Gammer, J. Srajer, T. Trisovic, J. Rahel, H.P. Karnthaler; RSC Adv., 6 (2016) 33348, https://doi.org/10.1039/c5ra26632

    Pursuit of optimal synthetic conditions for obtaining colloidal zero-valent iron nanoparticles by scanning pulsed laser ablation in liquids

    Full text link
    Liquid-Assisted Pulsed Laser Ablation (LA-PLA) is a promising top-down method to directly synthesize colloidal dispersions of nanoparticles in a eco-friendly manner. However, the role of LA-PLA synthesis parameters is not yet fully agreed. This work seeks to optimize the production of nanoscale zero-valent iron (nZVI) particles suitable for biomedical or environmental applications using nanosecond LA-PLA on iron targets with different ablation media, laser and target scanning parameters. The use of alcohols as solvents produces iron-iron oxide core-shell nanoparticles with amorphous cores, except for a small crystalline fraction corresponding to the biggest core sizes. Decreasing carbon chain length and complexity leads to a thinning of the carbonaceous material coatings and an increase of the colloidal stability and the nanoparticle productivity. Moreover, a decrease of solvent density and surface tension allows obtaining reduced sizes and polydispersity values. Among, laser and scanning parameters, the pulse accumulation per spot displayed a clear effect in boosting size and productivity. As main outcome, aqueous dispersions with suitable colloidal properties are obtained, either by transferring to water of optimized nZVI particles produced in ethanol, or by direct formation of nZVI particles and in situ coating with hydrophilic molecules in aqueous solutions of these moleculesThis research has been funded by the Spanish Ministry of Economy and Competitiveness (MINECO) and FEDER [research projects MAT2015-67354R, MAT2014-53961-R, and MAT2017- 86826-R] and by the Aragón government (DGA) [grant for consolidated group PLATON E31_17R]. OBM thanks the financial support from the “Ramón y Cajal Program” [research project RYC2010-07332] of the Spanish Ministry of Economy and Competitiveness (MINECO) and the H2020 Action H2020-MSCA-IF-2014_ST [grant 656908-NIMBLIS] of the Executive Agency for Research Manages of EU Commissio

    Revealing anelasticity and structural rearrangements in nanoscale metallic glass films using in situ TEM diffraction

    No full text
    We used a novel diffraction-based method to extract the local, atomic-level elastic strain in nanoscale amorphous TiAl films during in situ transmission electron microscopy deformation, while simultaneously measuring the macroscopic strain. The complementary strain measurements revealed significant anelastic deformation, which was independently confirmed by strain rate experiments. Furthermore, the distribution of first nearest-neighbor distances became narrower during loading and permanent changes were observed in the atomic structure upon unloading, even in the absence of macroscopic plasticity. The results demonstrate the capability of in situ electron diffraction to probe structural rearrangements and decouple elastic and anelastic deformation in metallic glasses
    corecore