943 research outputs found

    Pediatric Skull Base Tumors

    Get PDF
    Management of pediatric skull base tumors requires a multi-disciplinary team that integrates advances in neuro-imaging, radiation, medical and surgical treatments, and allied therapies. Tumors of the skull base harbor complex genetic and molecular signatures that have major implications on prognosis and quality of life. Individualized management requires a strong inter-disciplinary alliance amongst practitioners, as well as a strong therapeutic alliance with the patient and family to navigate the complex decision-making process of treatments. In this chapter, we present our experience managing surgical lesions of the pediatric skull base. General considerations to tumor pathology genetics and radiobiology, diagnostic imaging, rehabilitation of cranial neuropathies and cognitive function, surgical anatomy and reconstructive options, and quality of life should be applied to each case. We also present location- and tumor-specific considerations in the anterior, middle, and posterior fossa skull base with a focus on surgical approaches and complication avoidance. Special consideration is given to syndromic tumors, particularly those from neurofibromatosis type 2 (NF-2). Tumors can exist in multiple cranial compartments and as such some redundancy in concepts is unavoidable. Nevertheless, each patient presents with a unique clinical picture and tumor behavior. Knowledge and proficiency in skull base approaches is a necessary tool in every pediatric neurosurgeon’s armamentarium

    Relativistic theory of magnetic scattering of x rays: Application to ferromagnetic iron

    Get PDF
    We present a detailed description of a first-principles formalism for magnetic scattering of circularly polar- ized x rays from solids in the framework of the fully relativistic spin-polarized multiple-scattering theory. The scattering amplitudes are calculated using a standard time-dependent perturbation theory to second order in the electron-photon interaction vertex. Particular attention is paid to understanding the relative importance of the positive- and negative-energy solutions of the Dirac equation to the scattering amplitude. The advantage of the present theory as compared with other recent works on magnetic x-ray scattering is that, being fully relativistic, spin-orbit coupling and spin-polarization effects are treated on an equal footing. Second, the electron Green’s function expressed in terms of the path operators in the multiple-scattering theory allows us to include the contribution of the crystalline environment to the scattering amplitude. To illustrate the use of the method we have done calculations on the anomalous magnetic scattering at the K , L_II , and L_III absorption edges of ferromagnetic iron

    Tumor immune infiltration estimated from gene expression profiles predicts colorectal cancer relapse

    Full text link
    A substantial fraction of patients with stage I-III colorectal adenocarcinoma (CRC) experience disease relapse after surgery with curative intent. However, biomarkers for predicting the likelihood of CRC relapse have not been fully explored. Therefore, we assessed the association between tumor infiltration by a broad array of innate and adaptive immune cell types and CRC relapse risk. We implemented a discovery-validation design including a discovery dataset from Moffitt Cancer Center (MCC; Tampa, FL) and three independent validation datasets: (1) GSE41258 (2) the Molecular Epidemiology of Colorectal Cancer (MECC) study, and (3) GSE39582. Infiltration by 22 immune cell types was inferred from tumor gene expression data, and the association between immune infiltration by each cell type and relapse-free survival was assessed using Cox proportional hazards regression. Within each of the four independent cohorts, CD4+ memory activated T cell (HR: 0.93, 95% CI: 0.90-0.96; FDR = 0.0001) infiltration was associated with longer time to disease relapse, independent of stage, microsatellite instability, and adjuvant therapy. Based on our meta-analysis across the four datasets, 10 innate and adaptive immune cell types associated with disease relapse of which 2 were internally validated using multiplex immunofluorescence. Moreover, immune cell type infiltration was a better predictors of disease relapse than Consensus Molecular Subtype (CMS) and other expression-based biomarkers (Immune-AICMCC:238.1-238.9; CMS-AICMCC: 241.0). These data suggest that transcriptome-derived immune profiles are prognostic indicators of CRC relapse and quantification of both innate and adaptive immune cell types may serve as candidate biomarkers for predicting prognosis and guiding frequency and modality of disease surveillance

    Laser ablation of abnormal neurological tissue using robotic neuroblate system (LAANTERN): Procedural safety and hospitalization

    Get PDF
    BACKGROUND: Stereotactic laser ablation (SLA) has demonstrated potential utility for a spectrum of difficult to treat neurosurgical pathologies in multiple small and/or retrospective single-institutional series. Here, we present the safety profile of SLA of intracranial lesions from the Laser Ablation of Abnormal Neurological Tissue using Robotic NeuroBlate System (LAANTERN; Monteris Medical) multi-institutional, international prospective observational registry. OBJECTIVE: To determine the procedural safety of SLA for intracranial lesions. METHODS: Prospective procedural safety and hospitalization data from the first 100 treated LAANTERN patients was collected and analyzed. RESULTS: Mean age and baseline Karnofsky Performance Status (KPS) were 51(± 17) yr and 83(± 15), respectively. In total, 81.2% of patients had undergone prior surgical or radiation treatment. Most patients had a single lesion (79%) ablated through 1 burr hole (1.2 ± 0.7 per patient), immediately following a lesion biopsy. In total, \u3e90% of the lesion was ablated in 72% of treated lesions. Average total procedural time was 188.2 ± 69.6 min, and average blood loss was 17.7 ± 55.6 ccs. The average length of intensive care unit (ICU) and hospital stays before discharge were 38.1 ± 62.7 h and 61.1 ± 87.2 h, respectively. There were 5 adverse events (AEs) attributable to SLA (5/100; 5%). After the procedure, 84.8% of patients were discharged home. There was 1 mortality within 30 d of the procedure (1/100; 1%), which was not attributable to SLA. CONCLUSION: SLA is a safe, minimally invasive procedure with favorable postprocedural ICU and hospital utilization profiles

    Change in cervical length after arrested preterm labor and the risk of preterm birth

    Get PDF
    ACKNOWLEDGMENTS B.W.J.M. is supported by a NHMRC Investigator grant (GNT1176437). B.W.J.M. reports consultancy for Guerbet, has been a member of the ObsEva advisory board and holds stock options for ObsEva. B.W.J.M. has received research funding from Guerbet and Merck.Peer reviewedPublisher PD

    Mutation screening and association study of RNASEL as a prostate cancer susceptibility gene

    Get PDF
    To date, germline mutations have been found in three candidate genes for hereditary prostate cancer: ELAC2 at 17p11, RNASEL at 1q25 and MSR1 at 8p22. RNASEL, encoding the 2′,5′-oligoadenylate-dependant RNase L, seems to have rare mutations in different ethnicities, such as M1I in Afro-Americans, E265X in men of European descent and 471delAAAG in Ashkenazi Jews. In order to evaluate the relevance of RNASEL in the German population, we sequenced its open reading frame to determine the spectrum and frequency of germline mutations. The screen included 303 affected men from 136 Caucasian families, of which 45 met the criteria for hereditary prostate cancer. Variants were analysed using a family-based association test, and genotyped in an additional 227 sporadic prostate cancer patients and 207 controls. We identified only two sib pairs (1.4% of our families) cosegregating conspicuous RNASEL variants with prostate cancer: the nonsense mutation E265X, and a new amino-acid substitution (R400P) of unknown functional relevance. Both alleles were also found at low frequencies (1.4 and 0.5%, respectively) in controls. No significant association of polymorphisms (I97L, R462Q and D541E) was observed, neither in case–control analyses nor by family-based association tests. In contrast to previous reports, our study does not suggest that common variants (i.e. R462Q) modify disease risk. Our results are not consistent with a high penetrance of deleterious RNASEL mutations. Due to the low frequency of germline mutations present in our sample, RNASEL does not have a significant impact on prostate cancer susceptibility in the German population

    Glioma cells on the run – the migratory transcriptome of 10 human glioma cell lines

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastoma multiforme (GBM) is the most common primary intracranial tumor and despite recent advances in treatment regimens, prognosis for affected patients remains poor. Active cell migration and invasion of GBM cells ultimately lead to ubiquitous tumor recurrence and patient death.</p> <p>To further understand the genetic mechanisms underlying the ability of glioma cells to migrate, we compared the matched transcriptional profiles of migratory and stationary populations of human glioma cells. Using a monolayer radial migration assay, motile and stationary cell populations from seven human long term glioma cell lines and three primary GBM cultures were isolated and prepared for expression analysis.</p> <p>Results</p> <p>Gene expression signatures of stationary and migratory populations across all cell lines were identified using a pattern recognition approach that integrates <it>a priori </it>knowledge with expression data. Principal component analysis (PCA) revealed two discriminating patterns between migrating and stationary glioma cells: i) global down-regulation and ii) global up-regulation profiles that were used in a proband-based rule function implemented in GABRIEL to find subsets of genes having similar expression patterns. Genes with up-regulation pattern in migrating glioma cells were found to be overexpressed in 75% of human GBM biopsy specimens compared to normal brain. A 22 gene signature capable of classifying glioma cultures based on their migration rate was developed. Fidelity of this discovery algorithm was assessed by validation of the invasion candidate gene, connective tissue growth factor (CTGF). siRNA mediated knockdown yielded reduced <it>in vitro </it>migration and <it>ex vivo </it>invasion; immunohistochemistry on glioma invasion tissue microarray confirmed up-regulation of CTGF in invasive glioma cells.</p> <p>Conclusion</p> <p>Gene expression profiling of migratory glioma cells induced to disperse <it>in vitro </it>affords discovery of genomic signatures; selected candidates were validated clinically at the transcriptional and translational levels as well as through functional assays thereby underscoring the fidelity of the discovery algorithm.</p
    corecore