5,659 research outputs found

    An information-theoretic security proof for QKD protocols

    Full text link
    We present a new technique for proving the security of quantum key distribution (QKD) protocols. It is based on direct information-theoretic arguments and thus also applies if no equivalent entanglement purification scheme can be found. Using this technique, we investigate a general class of QKD protocols with one-way classical post-processing. We show that, in order to analyze the full security of these protocols, it suffices to consider collective attacks. Indeed, we give new lower and upper bounds on the secret-key rate which only involve entropies of two-qubit density operators and which are thus easy to compute. As an illustration of our results, we analyze the BB84, the six-state, and the B92 protocol with one-way error correction and privacy amplification. Surprisingly, the performance of these protocols is increased if one of the parties adds noise to the measurement data before the error correction. In particular, this additional noise makes the protocols more robust against noise in the quantum channel.Comment: 18 pages, 3 figure

    Description and molecular diagnosis of a new species of Brunfelsia (Solanaceae) from the Bolivian and Argentinean Andes

    Get PDF
    Brunfelsia plowmaniana N.Filipowicz & M.Nee sp. nov., a species from humid and cloud forests of the Bolivian and Argentinean Andes, is described and provided with a molecular diagnosis, using provisions available in the recently approved International Code of Nomenclature for algae, fungi and plants. Specimens belonging to the new species were previously placed in the polymorphic B. uniflora (Pohl) D.Don, which a molecular phylogeny revealed as polyphyletic. Revision of numerous collections revealed clear morphological differences between the new species and B. uniflora, the type locality of which is in the state of São Paulo, Brazil

    Quantum Key Distribution Using Quantum Faraday Rotators

    Full text link
    We propose a new quantum key distribution (QKD) protocol based on the fully quantum mechanical states of the Faraday rotators. The protocol is unconditionally secure against collective attacks for multi-photon source up to two photons on a noisy environment. It is also robust against impersonation attacks. The protocol may be implemented experimentally with the current spintronics technology on semiconductors.Comment: 7 pages, 7 EPS figure

    A de Finetti representation theorem for infinite dimensional quantum systems and applications to quantum cryptography

    Full text link
    According to the quantum de Finetti theorem, if the state of an N-partite system is invariant under permutations of the subsystems then it can be approximated by a state where almost all subsystems are identical copies of each other, provided N is sufficiently large compared to the dimension of the subsystems. The de Finetti theorem has various applications in physics and information theory, where it is for instance used to prove the security of quantum cryptographic schemes. Here, we extend de Finetti's theorem, showing that the approximation also holds for infinite dimensional systems, as long as the state satisfies certain experimentally verifiable conditions. This is relevant for applications such as quantum key distribution (QKD), where it is often hard - or even impossible - to bound the dimension of the information carriers (which may be corrupted by an adversary). In particular, our result can be applied to prove the security of QKD based on weak coherent states or Gaussian states against general attacks.Comment: 11 pages, LaTe

    Quantum cryptography with finite resources: unconditional security bound for discrete-variable protocols with one-way post-processing

    Full text link
    We derive a bound for the security of QKD with finite resources under one-way post-processing, based on a definition of security that is composable and has an operational meaning. While our proof relies on the assumption of collective attacks, unconditional security follows immediately for standard protocols like Bennett-Brassard 1984 and six-states. For single-qubit implementations of such protocols, we find that the secret key rate becomes positive when at least N\sim 10^5 signals are exchanged and processed. For any other discrete-variable protocol, unconditional security can be obtained using the exponential de Finetti theorem, but the additional overhead leads to very pessimistic estimates

    Security of quantum key distribution protocols using two-way classical communication or weak coherent pulses

    Get PDF
    We apply the techniques introduced in [Kraus et. al., Phys. Rev. Lett. 95, 080501, 2005] to prove security of quantum key distribution (QKD) schemes using two-way classical post-processing as well as QKD schemes based on weak coherent pulses instead of single-photon pulses. As a result, we obtain improved bounds on the secret-key rate of these schemes

    On giant piezoresistance effects in silicon nanowires and microwires

    Full text link
    The giant piezoresistance (PZR) previously reported in silicon nanowires is experimentally investigated in a large number of surface depleted silicon nano- and micro-structures. The resistance is shown to vary strongly with time due to electron and hole trapping at the sample surfaces. Importantly, this time varying resistance manifests itself as an apparent giant PZR identical to that reported elsewhere. By modulating the applied stress in time, the true PZR of the structures is found to be comparable with that of bulk silicon

    Quantum circuit for security proof of quantum key distribution without encryption of error syndrome and noisy processing

    Full text link
    One of the simplest security proofs of quantum key distribution is based on the so-called complementarity scenario, which involves the complementarity control of an actual protocol and a virtual protocol [M. Koashi, e-print arXiv:0704.3661 (2007)]. The existing virtual protocol has a limitation in classical postprocessing, i.e., the syndrome for the error-correction step has to be encrypted. In this paper, we remove this limitation by constructing a quantum circuit for the virtual protocol. Moreover, our circuit with a shield system gives an intuitive proof of why adding noise to the sifted key increases the bit error rate threshold in the general case in which one of the parties does not possess a qubit. Thus, our circuit bridges the simple proof and the use of wider classes of classical postprocessing.Comment: 8 pages, 2 figures. Typo correcte

    A de Finetti representation for finite symmetric quantum states

    Full text link
    Consider a symmetric quantum state on an n-fold product space, that is, the state is invariant under permutations of the n subsystems. We show that, conditioned on the outcomes of an informationally complete measurement applied to a number of subsystems, the state in the remaining subsystems is close to having product form. This immediately generalizes the so-called de Finetti representation to the case of finite symmetric quantum states.Comment: 22 pages, LaTe

    A new Australian species of Luffa (Cucurbitaceae) and typification of two Australian Cucumis names, all based on specimens collected by Ferdinand Mueller in 1856

    Get PDF
    As a result of his botanical explorations in northern Australia, Ferdinand von Mueller named several Cucurbitaceae that molecular data now show to be distinct, requiring their resurrection from unjustified synonymy. We here describe and illustrate Luffa saccata F. Muell. ex I.Telford, validating a manuscript name listed under L. graveolens Roxb. since 1859, and we lectotypify Cucumis picrocarpus F. Muell. and C. jucundus F. Muell. The lectotype of the name C. jucundus, a synonym of C. melo, is mounted on the same sheet as the lectotype of C. picrocarpus, which is the sister species of the cultivated C. melo as shown in a recent publication
    corecore